建设项目环境影响报告表(污染影响类)

项目名称: 浙江三门太和大型锻造有限公司年产 12万 吨锻件项目

建设单位 (盖章): 浙江三门太和大型锻造有限公司

编制日期: 2025年7月

中华人民共和国生态环境部制

目 录

—, 3	建设项目基本情况1
二、3	建设项目工程分析26
三、I	区域环境质量现状、环境保护目标及评价标准53
四、3	主要环境影响和保护措施64
五、3	环境保护措施监督检查清单89
六、	结论91
七、	大气专项评价93
八、王	环境风险影响专项评价171
附表.	191
附 附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附附	1 项目地理位置示意图 2 项目周边环境概况示意图 3 项目厂区平面布置图 4 项目车间分区防渗图 5 三门县县城西区 XB-02-03-03、XB-02-03-09 地块控制性详细规划修改 6 三门县声环境功能区划图 7 台州市水环境功能区划图 8 三门县陆域生态环境管控单元分类图 9 台州市三门县三区三线(2022 年 9 月批复版)示意图 10 土地利用规划图 11 三门县国土空间控制线(三条控制线)规划图 12 项目地下水监测点位示意图
附件: 附件, 附件, 附件, 附件, 附件,	 浙江省企业投资项目备案(赋码)信息表 三门县经济与信息化局关于本项目国民经济代码的情况说明 营业执照 土地证 现有项目环评批复及验收文件 企业排污许可证

附件 8 现有项目危废处置协议

附件9 浙江三门太和 IF+LF 除尘工艺初步设计规格书

附件 10 原辅料说明书

附件 11 技术咨询会专家组意见及修改清单

一、建设项目基本情况

建设项目名称	浙江三门太和大型锻造有限公司年产 12 万吨锻件项目				
项目代码			2401-331022-04-01-478592		
建设单位联系人	梭	炎厦	联系方式	181****33	0
建设地点		浙江省三门	县海游街道上坑工业	园区祥和路 58 号	
地理坐标		(<u>121</u> 度 <u>2</u>	<u>20</u> 分 <u>27.105</u> 秒, <u>29</u>	更 <u>5</u> 分 <u>24.36</u> 秒)	
国民经济 行业类别	C3393 锻件 制品制造	- 及粉末冶金	建设项目 行业类别	三十、金属制品业及其他金属制品制	
建设性质	□新建(迁建) □改建 ☑扩建 □技术改造		建设项目 申报情形	☑首次申报项目 □不予批准后再次。 □超五年重新审核。 □重大变动重新报	页目
项目审批(核准/ 备案)部门(选填)]县发展和改 5局	项目审批(核准/ 备案)文号(选填)	/	
总投资 (万元)	65	0000	环保投资(万元)	660	
环保投资占比(%)	1	.02	施工工期	12 个月	
是否开工建设	☑否 □是:		用地 (用海) 面积 (m²)	62514.2	
	表1-1 专项设置情况表				
	专项评 价类别	1	设置原则	本项目情况	是否 设置
	大气	二噁英、苯 氯气且厂氡	有毒有害污染物 ¹ 、 并[a]芘、氰化物、 界外500米范围内有 护目标 ² 的建设项目	本项目外排大气 污染物中含二噁 英,且厂界外500 米范围内有环境 空气保护目标。	是
专项评价设置情况	地表水	新增工业废水直排建设项目 (槽罐车外送污水处理厂的除 外);新增废水直排的污水集 中处理厂		本项目不属于新增工业废水直排建设项目:不属于新增废水直排的污水集中处理厂。	否
	环境风险	存储量超过	1易燃易爆危险物质 临界量 ³ 的建设项目	本项目有毒有害 和易燃易爆危险 物质存储量已超 过临界量。	是
	生态	要水生生物 饵场、越冬	游500米范围内有重则的自然产卵场、索小场和洄游通道的新 次的污染类建设项目	项目不涉及取水。	否

	海洋	直接向海排放污染物的海洋工 程建设项目	本项目非海洋工 程项目。	否			
	污染物 保护区、 域。3.临	注: 1.废气中有毒有害污染物指纳入《有毒有害大气污染物名录》的污染物(不包括无排放标准的污染物)。2.环境空气保护目标指自然保护区、风景名胜区、居住区、文化区和农村地区中人群较集中的区域。3.临界量及其计算方法可参考《建设项目环境风险评价技术导则(HJ169)附录B、附录C。					
规划情况	体规划》 批复机关 批复文号	名称:《浙江三门经济开发区(滨海科技城区块、临港产业城区块)总体规划》 体规划》 批复机关:三门县人民政府 批复文号:三政[2019]7号(三门县人民政府关于要求转报浙江三门经济 开发区整合提升方案的请示)					
文件名称:浙江三门经济开发区(滨海科技城区块、临港产业城区块)总体规划环境影响报告书 召集审查机关:浙江省生态环境厅 审查文件名称及文号:《浙江三门经济开发区(滨海科技城区块、临港产业城区块)总体规划环境影响报告书》,浙环函〔2024〕249 号							
规划及规划环境影响评价符合性分析	规 现公平 沙四工城起至至 方规围划 滨里方 柳至业西潺马马 式划东滨海,公该大范小区岙家娄临整面起	二三门经济开发区(滨海科技城区 合性分析 初期范围 科技城区块:以就近整合的方式将城区块整合成为滨海科技城区块,以就近整合的方式将城区块整合成为滨海科技城区块,当省级开发区核定面积 10 平方公里,拟授权管理区域面积 3.22 平方点块分为东西两大片区,其中东片区塘方向、园里及潺岙区块进行环东路,正是上海,正是上海,上至海,上至海,上至海,上至海,上至山麓,北至山,上至山,上,一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	等县城西区、三江口科 该区块规划面积 35 里,已授权管理区域面公里。 区在现滨海新城的基础,规划面积 25.92平 各,南至 224 省道复: 西片区由三江口科创新区四阜突村、新场村、石 运汽, 一种 医范围东起统建村山 地震河小区。 园区的基础上,以就 该区块位于三门县 面积 9.96 平方公里	10.77 积 础产线新至岩脚 近健,新平24.55 往上公头、围,, 合镇至区,在大县东北南 的,范			

该区块分为南北两大片区,其中南片区由健跳港两岸组成,规划面积 6.02 平方公里,四至范围东起健跳港狗头门,南至岙口塘大牛山,西临沿海高速公路,北至下沙塘后沙山;北片区由六敖北塘、核电站等组成,规划面积 3.94 平方公里,四至范围东起老鹰嘴头,南至虎头山嘴一北塘防洪堤一线,西临沿海高速公路,北至蛇蟠水道。

化工集聚区-洋市涂区块:洋市涂区块四至范围东临猫头洋,南宫前湾,西界健跳镇七市村,北靠健跳港,总占地面积263.09公顷。该区块与本次规划临港产业城区块南片区部分重叠,重叠面积约为0.3841km2。

(2) 规划期限

本次规划期限为 2023-2030 年, 规划基准年为 2022 年。

(3) 产业发展规划(滨海科技城区块)

①产业体系

规划形成"113"的产业发展体系,明确橡塑产业为支柱产业,新能源与新材料产业为新兴产业,旅游产业、汽车制造、机电制造为三大基础产业。

②分区发展引导

滨海新城片区产业发展引导。滨海新城作为三门新能源城的重要基地,规划大力发展新能源装备配件产业链,为推动三门能源产业绿色化发展提供有力保障;重视引进大型龙头企业,积极培育一批大企业、大品牌向园区集聚,打造三门新的产业活力基地;积极引进新能源装备配件产业的中小型企业,以"初创企业--专精特新--上市企业"为路径,借助滨海新城创新孵化空间进行初期发展,实现跨越式发展;在空间布局中重视MO类产业,建设三门湾新能源产学研一体化科研平台、沪杭甬科技孵化器,包括科创企业孵化、研发办公、小型研发生产、商务交流中心、共享会议室、商务服务大厦等,打造三门产业的科创高地。立足"依山、临溪、滨海"特色,打造具有山海风情的滨海新城片区,围绕金麟湖城市休闲综合体,配套建设游客集散服务中心、高端度假酒店、二十四节气文化博览园等,打造三门城市旅游新地标。

三江口科创新区产业发展引导。集中力量在汽车制造、健康时尚行业培育大型龙头企业,打造行业品牌;支持骨干企业、规上企业积极引进高新技术、先进适用技术及新颖工艺;增大科研投入比,在企业内部增设科研空间;对接新兴领域,适度淘汰低效企业,重点拓展智能电网、精密电器仪器等新兴领域,承接发展节能.环保数控机床等专业设备;逐步腾退枫坑塘片区部分低效企业,建设高品质居住商业、商务办公、公

园绿地等城市功能。

西区产业发展引导。橡塑产业提质升级,淘汰落后工艺,创新研发新型材料积极运用橡胶改性材料;升级生产技术,引进先进智能生产技术,应用自动化炼胶生产线;增大科研投入比,在企业内部增设科研空间。优化产业链条,引进发展橡胶机械工业,发展汽摩传动带,延长胶带产业链。推动橡塑产业公共服务平台建设,打造台州橡塑产业联盟创新高地,制定三门县塑产业团体标准,推动塑产业品牌建设。

规划符合性分析:项目位于浙江省三门县海游街道上坑工业园区祥和路 58 号,位于滨海科技城区块西区,用地性质为工业用地。本项目为锻件生产,产品广泛用于机械、电力、船舶、矿山、石油、模具等行业,为"旅游产业、汽车制造、机电制造等三大基础产业"提供原材料,符合《浙江三门经济开发区(滨海科技城区块、临港产业城区块)总体规划》。

2、《浙江三门经济开发区(滨海科技城区块,临港产业城区块) 总体规划环境影响报告书》符合性分析

《浙江三门经济开发区(滨海科技城区块,临港产业城区块)总体规划环境影响报告书》于2024年6月通过审查(浙环函(2024)249号)。 生态空间清单见表 1-2,现有问题整改措施清单见表 1-3,环境准入"负面清单"见表 1-4,规划环评符合性分析见表 1-5。

				表1-2 生态空间清单(清单	1)	
	序号	规划区块	生态空 间名称 及编号	生态空间范围示意图	管控要求	现状用地 类型
规划及规划环境影响评价符合:	1	滨海科技 城区块西 片区(县 城西区)		海游街	优化完善区域产业布局,合理规划布局三类工业项目,鼓励对三类工业项目进行淘汰和提升改造,进一步调整和优化产业结构,逐步提高区域产业准入条件。重点加快园区整合提升,完善园区的基础设施配套。合理规划居住区与工业功能区,在居住区和工业区、工业企业之间设置防护绿地、生活绿地等隔离带。	珠游溪两 岸区域,布 局以工业 和居住用 地为主。
性分			•	表1-3 现有问题整改措施清单(清单2)	

沂	VIV.	类别	存在的环保问题	主要原因	整改方案
	产业结构与布局	产业结构	开发区现已形成以机电、橡塑、汽摩配和工艺品行业为主导的产业格局,高端产业不足;部分企业规模小、土地利用率低,需要进一步转型。	三门传统产业的历史遗留问 题。	1.着力加快传统行业工业经济转型升级、以生态保护和节能减排为重点,优化产业布局。工业园区重点发展机电、汽摩配和工艺品行业; 县城西区重点发展机电和橡塑行业; 滨海新城启动区重点发展高端装备制造业、电子信息产业和新能源产业。 2.结合三门县国民经济和社会发展第十三个五年规划纲要,提质增效,构建产业发展新体系。进一步发挥开发区的传统产业优势,依托现有的工业基础,引进培育产业链上下游企业,发

	空间布局	滨海科技城西片区—县城西区工居混杂较为普遍。部分企业和居住区、学校相邻(马娄小学、上坑村、下坑村、祥和村、统建村等)。	前期缺乏规划指引,与周边布局不合理。	展壮大产业集群,提高产品技术含量,加快传统产业改造提升。 建议将来项目引进时居住区周边工业用地限制新建、扩建恶臭类污染项目,不得恶化环境质量现状,在维持现状的基础上,逐步进行污染较大的企业提升污染防治措施水平或迁建,或实施较近的居住区搬迁等。
污染防治	环保基础设施	三门县城市污水处理厂、三门县健跳污水处理厂现状属于城镇污水处理厂,根据《关于印发〈化工园区建设标准和认定管理办法(试行)〉的通知》(工信部联原[2021]220号)相关要求:"化工园区应按照分类收集、分质处理的要求,配备专业化工生产废水集中处理设施(独立建设或依托骨干企业)及专管或明管输送的配套管网,园区内废水做到应纳尽纳、集中处理和达标排放",目前园区化工企业已经配备了专管输送,但未配备专业化工生产废水集中处理设施。	历史原因,未进行相关规划。	根据文件要求,推进化工园区生产废水集中处置,园区拟建设洋市涂污水处理厂处理化工企业废水。
6)治与环境保护	环境质量	规划区内地下水检测结果均为V类。 规划周边海域海水水质硝酸盐氮、活性磷酸盐存在超标情况,对排放氮磷污染物的 企业有一定的制约影响。	1、历史农村生活污水未充分纳管污染导致氨氮、总硬度、溶解性总固体、总大肠菌群、宽落总数等污染物浓度较高;2、项目所在区域靠近海域,且与周边地表水水力交换频繁,水质受附近地表水、海水影响较大,导致氯、钠、锰等污染物浓度较高。 3、海水环境主要受到面源、点源以及周边海域污染影响。	1、加快区域管网建设,提高污水纳管率。 2、加强区块地下水监测排查,防止管网泄漏气情况发生,根据用水取水情况,有必要的情况下针对重点水污染物进行治理。 3、推广企业清洁生产,鼓励实施中水回用,从少废水排放。 4、推进发展高效生态农业,农业面源将得到不效削减,能够改善区域周边海水和地下水环境
	环境管 理	环境风险管控体系有待进一步完善。	规划区正在开发中。	开发区需尽快编制园区应急预案

			表1-4 环境准入"			
区域		分类	行业清单	工艺清单	产品清单	制订依据
		C29 橡胶和塑 料制品业	塑料人造革、合成革制造	1.有电镀工艺的; 2.开放式捏炼、密炼设备; 3.再生橡胶(含硫化橡胶粉)生产企业的生产工艺及装备、污染物产生指标不符合《再生橡胶行业清洁生产评价指标体系》 II级水平; 4.露天焚烧废塑料、废橡胶及加工利用过程产生的残余垃圾、滤网;	/	
		C17 纺织业	/	有洗毛、脱胶、缫丝工艺的;染整工艺 有前处理、染色、印花(喷墨印花和数 码印花的除外)工序的;	/	
演海科技城-西片		C19 皮革、毛皮、羽毛及其制品和制鞋业	皮革鞣制加工、毛皮鞣 制加工	有鞣制、染色工艺的	/	《三门县三线
区-县城西区(台) 州市三门县中心	禁止	C21 家具制造 业		有电镀工艺的	/	一单"生态环境 分区管控方案》
城区产业集聚重 点管控单元 ZH33102220110)	准入 产业	C22 造纸和纸 制品业	纸浆制造,造纸(含废 纸造纸,但手工纸、加 工纸制造除外)	/	/	及规划主导产 业、土地利用规 划
211331022201107	10)	C24 文教、工 美、体育和娱 乐用品制造业	/	有电镀工艺的	/	AU.
		C25 石油、煤 炭及其他燃料 加工业	精炼石油产品制造(单 纯物理分离、物理提 纯、混合、分装的除 外)、煤炭加工(煤制 品制造、其他煤加工除 外)、核燃料加工	/	危险化学 品生产企 业	
		C26 化学原料 和化学制品制 造业	基本化学原料制造;肥料制造(化学方法生产 氮肥、磷肥、复混肥的);农药制造;涂料、染料、颜料、油墨及其	/	危险化学 品生产企 业	

	类似产品制造;合成材料制造;合成橡胶制造;合成橡胶制造;专用化学品制造;炸药、火工及焰火产品制造;好产品制造(以油脂为原料的造或皂粒制造(采用的上型皂粒制造(采用的原外))(以高、物理是纯、混合、分类的,与其他行业生产类的,与其使的项目)			
C27 医药制造 业	化学药品原料药制造 (不含单纯药品复配、 分装,不含化学药品制 剂制造的)	/	危险化学 品生产企 业	
C30 非金属矿 物制品业	水泥制造、石棉制品制造、含焙烧的石墨、碳素制品、光学玻璃制造	使用高污染燃料的	/	
C31 黑色金属 冶炼和压延加 工业	炼铁、炼钢(锻压配 套的炼钢除外)、铁 合金冶炼	/	/	
C32 有色金属 冶炼和压延加 工业	/	/	/	
C33 金属制品 业	/	有电镀工艺的;有钝化工艺的热镀锌	/	
C34 通用设备 制造	/	有电镀工艺的	/	
C35 专用设备 制造业	/	有电镀工艺的	/	
C36 汽车制造 业	/	有电镀工艺的	/	
C37 铁路、船舶、航空航天	/	有电镀工艺的	/	

		和其他运输设						
		备制造业						
		C38 电气机械 和器材制造业	/	有电镀工艺的	铅蓄电池			
		C40 仪器仪表 制造	/	有电镀工艺的	/			
			《产业结构调整排	旨导目录》中淘汰类设备、工艺和产品		《产业结构调 整指导目录》		
		生产和使用	VOCs 含量限值不得	符合国家标准的涂料、油墨、胶粘剂、清	 抢剂等项目	《浙江省"十四 五"挥发性有机		
		溶剂型工业涂料						
			使用进口固体废物作为原料的项目					
		不符合国家产能	不符合国家产能置换要求的严重过剩产能行业(钢铁、水泥、电解铝、平板玻璃、炼油、焦化 等行业)的项目					
				石化、现代煤化工		指南(试行,2022 年版)》浙江省实 施细则		
	限制	C29 橡胶和塑 料制品业	/	1.未配套建设规范、高效治污设施的密烧心; 心; 2.采用水油法、油法进行再生胶生产; 3.使用促进剂 NOBS、防老剂 D、秋兰姆硫代氨基甲酸钠、五氯硫酚、矿物系焦剂剂等有毒有害原料的; 4.未使用清洁、环保型原料的;		《浙江省"十四		
	准入产业	C19 皮革、毛 皮、羽毛及其 制品和制鞋业	/	1.露天开展干燥、黏合操作; 2.敞开式涂装作业,露天或敞开式晾(风 干;) /	五"挥发性有机 物综合治理方 案》		
		C20 木材加工 和木、竹、藤、 棕、草制品业	/	1.露天开展干燥、黏合操作; 2.敞开式涂装作业,露天或敞开式晾(风 干;				
		C21 家具制造 业	/	1.敞开式涂装作业,露天或敞开式晾(风 干;	/			

	C33 金属制品 业	/	1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	/	
	C34 通用设备 制造业	/	1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	/	
	C35 专用设备 制造业	/	1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	/	
	C36 汽车制造 业	/	1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	/	
	C37 铁路、船舶、航空航天和其他运输设备制造业	/	1.敞开式涂装作业,露天或敞开式晾(风) 干(船舶等大型工件涂装及补漆确实不能实 施密闭作业的除外); 2.粘土砂型铸造的;	/	
	C38 电气机械 和器材制造业	/	1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	/	
	C42 废弃资源 综合利用业	金属废料和碎屑 加工处理、非金属 废料和碎屑加工 处理	/	/	
	<u> </u>	业结构调整指导目:	录》中限制类设备、工艺和产品	/	《产业结构调 整指导目录》

规划环评符合性分析:

表1-5 规划环评符合性分析

П		74 35-44 11 14 1-34 11		
		要求	项目情况	是否符合
	生态空间清单 (管控要求)	优化完善区域产业布局,合理规划布局三类工业项目,鼓励对三类工业项目进行淘汰和提升改造,进一步调整和优化产业结构,逐步提高区域产业准入条件。重点加快园区整合提升,完善园区的基础设施配套。合理规划居住区与工业功能区,在居住区和工业区、工业企业之间设置防护绿地、生活绿地等隔离带。	本项目为锻件及粉末冶金制品制造,属于二类工业项目。项目位于三门县海游街道上坑工业园区祥和路 58 号,属于浙江三门经济开发区滨海科技城-西片区-县城西区,最近居住区为 400m 处的上坑村,符合生态空间要求。	符合
	现有问题整改 措施清单	规划区内地下水检测结果均为V类。 规划周边海域海水水质硝酸盐氮、活性磷酸盐存在超标情况,对排	项目生产废水循环利用,不外排;生活 污水经预处理达标后纳管至三门县城市 污水处理厂集中处理,项目对地下水影	符合

	放氮磷污染物的企业有一定的制约影响。 环境风险管控体系有待进一步完善	响很小。项目投产后,企业将根据相关 规定要求修订应急预案,并落实应急预 案中各项应急措施和设施的建设。	
规划优化调整 建议清单	该区域不涉及优化调整建议	不涉及。	/
环境准入条件 清单	C31 黑色金属冶炼和压延加工业、C33 金属制品业禁止准入产业: 1、炼铁、炼钢(锻压配套的炼钢除外)、铁合金冶炼。 2、有电镀工艺的;有钝化工艺的热镀锌。 C31 黑色金属冶炼和压延加工业、C33 金属制品业限制准入产业: 1.敞开式涂装作业,露天或敞开式晾(风); 2.粘土砂型铸造的;	本项目产品为锻件,属金属制品业,生产工艺中含锻压配套的炼钢(不属于炼钢企业),不涉及电镀、热镀锌工艺,不涉及涂装作业,不涉及粘土砂型铸造,因此项目不属于环境准入条件清单中的禁止、限制类。	符合

1、"三线一单"符合性分析

(1) 生态保护红线

本项目位于浙江省三门县海游街道上坑工业园区祥和路 58 号,根据区块规划、土地证及征地材料,项目用地性质为工业用地。项目不在当地饮用水源、风景区、自然保护区等生态保护区内,不在三门县"三线一单"生态环境分区管控方案等相关文件划定的生态保护红线内,不在《台州市三门县三区三线(2022 年 9 月批复版)示意图》划定的永久基本农田和生态保护红线范围内;满足生态保护红线要求。

(2) 环境质量底线

项目所在区域环境空气属于二类功能区,地表水属于III类地表水体,声环境属于3类声环境功能区。根据环境质量现状监测数据可知,项目所在区域目前大气环境、地表水环境、土壤环境质量现状均满足相应环境功能区划要求,满足环境质量现状要求;地下水部分指标已超标,主要原因可能是由于农业面源和生活面源污染影响所致。近年来三门县深入践行"绿水青山就是金山银山"绿色生态发展理念,在扎实推进"五水共治"工作。开展截污纳管提升、生态补水、农业面源污染治理、违建违排违倒管控等"八大行动",进一步加大督查、执法、宣传力度,三门县域水体逐渐得到改善。

项目生活污水经隔油池+化粪池处理达标后纳管排放,不直接排入附近地表水,对周围水环境基本无影响;项目废气污染物均能达标排放,经预测分析对周边环境影响小;经预测项目对周边环境噪声影响小。本次项目在设计和建设过程中根据相关要求,坚持"源头控制、末端防治、污染监控、应急响应"相结合的原则,以预防和控制为主,严格控制非正常工况的产生,正常情况下项目能做到废水、废气、噪声达标排放,固体废物得到妥善处置。

因此,企业在采取环评提出的相关防治措施,并通过区域总量平衡后,能够维持区域环境质量现状,也不会对区域环境质量逐步改善的趋势造成影响。

(3) 资源利用上线

本项目用水来自市政供水管网,其他能源主要为电、天然气,通过相应管网接入。本项目建成运行后通过内部管理、设备选择、原辅材料的选用和管理、污染治理等多方面采取合理可行的防治措施,以"节能、降耗、减污"为目标,有效地控制污染。根据《浙江三门太和大型锻造有限公司年产 12 万吨锻件项目节能报告》(报批稿),项目各项能耗指标均符合国家及地方相关节能要求,在原辅材料单耗、能耗、水、气等资源利用等方面不会突破区域的资源利用上线。

综上所述, 本项目的建设不会突破区域的资源利用上线。

(4) 生态环境准入清单

本项目位于浙江省三门县海游街道上坑工业园区祥和路 58 号,根据《三门县生态环境分区管控动态更新方案》,属于"台州市三门县中心城区产业集聚重点管控单元 ZH33102220110",本项目的建设符合该管控单元的环境准入清单要求。

表1-6 生态环境管控单元分类准入清单符合性分析

	では、				
		要求	项目情况	是否符合	
			本项目为锻件及粉末冶金制品制		
			优化完善区域产业布局,合理规划布局三类工业项目,鼓励对三类工业项目进	造,属于二类工业项目。项目位于	
		行淘汰和提升改造,进一步调整和优化产业结构,逐步提高区域产业准入条件。	三门县海游街道上坑工业园区祥和		
	空间布	重点加快园区整合提升,完善园区的基础设施配套。合理规划布局居住、医疗	路 58 号,属于浙江三门经济开发区		
	局约束	卫生、文化教育等功能区块,与工业区块、工业企业之间设置防护绿地、生活	滨海科技城-西片区-县城西区,最近	符合	
	/H21/K	绿地等隔离带。对与生态保护红线直接相邻的工业功能区,设置不小于10米	居民区为 400m 处的上坑村,满足与		
		的缓冲带。	居住区之间设隔离带的要求。项目		
-1-1-		印线作中。	南厂区西侧、南侧靠近生态保护红		
其			线,拟设置不小于10米的缓冲带。		
他符		严格实施污染物总量控制制度,根据区域环境质量改善目标,削减污染物排放	本项目实施后,污染物排放严格落		
	污染物	总量。加强污水处理厂建设及提升改造,深化工业园区(工业企业)"污水零直	实总量控制制度。厂区实现雨污分		
合性		排区"建设,所有企业实现雨污分流。实施工业企业废水深度处理,严格重污染	流,项目生产废水循环使用不外排,		
分		行业重金属和高浓度难降解废水预处理和分质处理,加强对纳管企业总氮、盐	生活污水经预处理后纳入三门县城		
析		分、重金属和其他有毒有害污染物的管控,强化企业污染治理设施运行维护管	市污水处理厂处理达标后排放;生		
171		理。全面推进橡胶、工艺品等重点行业 VOCs 治理和工业废气清洁排放改造,	产过程中产生的废气经有效收集处	<i>55</i>	
	排放管	强化工业企业无组织排放管控。二氧化硫、氮氧化物、颗粒物、挥发性有机物	理后均能达标排放; 固废经分类收	符合	
	控	全面执行国家排放标准大气污染物特别排放限值,深入推进工业燃煤锅炉烟气	集、暂存后,可做到妥善处置。根		
		清洁排放改造。加强土壤和地下水污染防治与修复。推动企业绿色低碳技术改	据《浙江三门太和大型锻造有限公		
		造。新建、改建、扩建高耗能、高排放项目须符合生态环境保护法律法规和相	司年产 12 万吨锻件项目节能报告》		
		关法定规划,强化"两高"行业排污许可证管理,推进减污降碳协同控制。重点	(报批稿),项目各项能耗指标均		
		行业按照规范要求开展建设项目碳排放评价。	符合国家及地方相关节能要求。		
		定期评估沿江河湖库工业企业、工业集聚区环境和健康风险,落实防控措施。			
		相关企业按规定编制环境突发事件应急预案,重点加强事故废水应急池建设,	项目实施后,要求企业加强环境应		
	环境风	以及应急物资的储备和应急演练。强化工业集聚区企业环境风险防范设施设备	急防范,配备相关应急物资,更新	符合	
	险防控	建设和正常运行监管,落实产业园区应急预案,加强风险防控体系建设,建立	事故应急预案,故符合环境风险防	13 🗖	
		常态化的企业隐患排查整治监管机制。	控要求。		
		市态化加生物态等,但是自然的。			

其	
他	
符	
_	
台	
性	
分	•
析	

资源开 发效率 推进重点行业企业清洁生产改造,大力推进工业水循环利用,减少工业新鲜水 用量,提高企业中水回用率。落实最严格水资源管理制度,落实煤炭消费减量 替代要求,提高能源使用效率。 本项目能源采用电能和天然气,用 水来自市政供水管网,实施过程中 加强节水管理,减少新鲜水用量, 满足资源开发效率要求。

符合

本项目为锻件及粉末冶金制品制造,属于二类工业项目。项目位于三门县海游街道上坑工业园区祥和路 58 号,属于浙江三门经济开发区 滨海科技城-西片区-县城西区,最近居民区为 400m 处的上坑村,满足与居住区之间设隔离带的要求。项目南厂区西侧、南侧靠近生态保护红线, 拟设置不小于 10 米的缓冲带;本项目实施后,污染物排放严格落实总量控制制度。厂区实现雨污分流,项目生产废水循环使用不外排,生活 污水经预处理后纳入三门县城市污水处理厂处理达标后排放;生产过程中产生的废气经有效收集处理后均能达标排放;固废经分类收集、暂存后,可做到妥善处置。根据《浙江三门太和大型锻造有限公司年产 12 万吨锻件项目节能报告》(报批稿),项目各项能耗指标均符合国家及 地方相关节能要求;项目实施后,要求企业加强环境应急防范,配备相关应急物资,更新事故应急预案,故符合环境风险防控要求;本项目能 源采用电能和天然气,用水来自市政供水管网,实施过程中加强节水管理,减少新鲜水用量,满足资源开发效率要求。综上,项目建设符合生态环境管控单位的空间布局约束、污染物排放管控、环境风险防控和资源开发效率要求,因此项目建设符合《三门县生态环境分区管控动态更新方案》的要求。

2、"三区三线"符合性分析

根据《台州市三门县三区三线(2022年9月批复版)示意图》划定方案,本项目位于城镇集中建设区范围,不属于永久基本农田和生态保护红线范围,因此本项目的建设符合"三区三线"要求。

3、《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评〔2021〕45号)符合性分析

表1-7 《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评(2021)45号)符合性分析

相关要求	符合性分析	是否符合
深入实施"三线一单"。各级生态环境部门应加快推进"三线一单"成果在"两高"行业产业布局和结构调整、重大项目选址中的应用。地方生态环境部门组织"三线一单"地市落地细化及后续更新调整时,应在生态环境准入清单中深化"两高"项目环境准入及管控要求;承接钢铁、电解铝等产业转移地区应严格落实生态环境分区管控要求,将环境质量底线作为硬约束。	本项目位于"台州市三门县中心城区 产业集聚重点管控单元 ZH33102220110",项目建设符合管 控单元环境准入和管控要求。	符合
强化规划环评效力。各级生态环境部门应严格审查涉"两高"行业的有关综合性规划和工业、能源等专项规划环评,特别对为上马"两高"项目而修编的规划,在环评审	本项目不涉及。	不涉及

其
他
符
合
性
分
析

查中应严格控制"两高"行业发展规模,优化规划布局、产业结构与实施时序。以"两高"行业为主导产业的园区规划环评应增加碳排放情况与减排潜力分析,推动园区绿色低碳发展。推动煤电能源基地、现代煤化工示范区、石化产业基地等开展规划环境影响跟踪评价,完善生态环境保护措施并适时优化调整规划。		
严把建设项目环境准入关。新建、改建、扩建"两高"项目须符合生态环境保护法律法规和相关法定规划,满足重点污染物排放总量控制、碳排放达峰目标、生态环境准入清单、相关规划环评和相应行业建设项目环境准入条件、环评文件审批原则要求。石化、现代煤化工项目应纳入国家产业规划。新建、扩建石化、化工、焦化、有色金属治炼、平板玻璃项目应布设在依法合规设立并经规划环评的产业园区。各级生态环境部门和行政审批部门要严格把关,对于不符合相关法律法规的,依法不予审批。	本项目不属于"两高"项目,项目建设符合相关生态环境保护法律法规和相关法定规划,满足重点污染物排放总量控制、生态环境准入清单和相应行业建设项目环境准入条件、环评文件审批原则要求。	符合
落实区域削减要求。新建"两高"项目应按照《关于加强重点行业建设项目区域削减措施监督管理的通知》要求,依据区域环境质量改善目标,制定配套区域污染物削减方案,采取有效的污染物区域削减措施,腾出足够的环境容量。国家大气污染防治重点区域(以下称重点区域)内新建耗煤项目还应严格按规定采取煤炭消费减量替代措施,不得使用高污染燃料作为煤炭减量替代措施。	本项目实施后拟对全厂进行技术改造,可提升清洁生产和污染防治水平。项目总量拟落实区域削减要求。 项目采用天然气,不涉及煤的使用。	符合
提升清洁生产和污染防治水平。新建、扩建"两高"项目应采用先进适用的工艺技术和装备,单位产品物耗、能耗、水耗等达到清洁生产先进水平,依法制定并严格落实防治土壤与地下水污染的措施。国家或地方已出台超低排放要求的"两高"行业建设项目应满足超低排放要求。鼓励使用清洁燃料,重点区域建设项目原则上不新建燃煤自备锅炉。鼓励重点区域高炉-转炉长流程钢铁企业转型为电炉短流程企业。大宗物料优先采用铁路、管道或水路运输,短途接驳优先使用新能源车辆运输。	本项目实施后拟对全厂进行技术改造,可提升清洁生产和污染防治水平。本次项目采用先进的生产工艺和装备,项目单位产品物耗、能耗和水耗能够达到清洁生产先进水平;企业将严格落实土壤与地下水的污染防治措施。项目使用的为天然气,属清洁能源。	符合
将碳排放影响评价纳入环境影响评价体系。各级生态环境部门和行政审批部门应积极推进"两高"项目环评开展试点工作,衔接落实有关区域和行业碳达峰行动方案、清洁能源替代、清洁运输、煤炭消费总量控制等政策要求。在环评工作中,统筹开展污染物和碳排放的源项识别、源强核算、减污降碳措施可行性论证及方案比选,提出协同控制最优方案。鼓励有条件的地区、企业探索实施减污降碳协同治理和碳捕集、封存、综合利用工程试点、示范。	根据浙江省生态环境厅关于印发实施《浙江省建设项目碳排放评价编制指南(试行)》(浙环函[2021]179), 本项目不开展碳排放影响评价。	符合
加强排污许可证管理。地方生态环境部门和行政审批部门在"两高"企业排污许可证核发审查过程中,应全面核实环评及批复文件中各项生态环境保护措施及区域削减措施落实情况,对实行排污许可重点管理的"两高"企业加强现场核查,对不符合条件的依法不予许可。加强"两高"企业排污许可证质量和执行报告提交情况检查,督促企业做好台账记录、执行报告、自行监测、环境信息公开等工作。对于持有排污限期整改通知书或排污许可证中存在整改事项的"两高"企业,密切跟踪整改落实情况,发现未按期完成整改、存在无证排污行为的,依法从严查处。	本次项目实施后企业将依法申报排 污许可。	符合

4、《浙江省人民政府关于印发浙江省空气质量持续改善行动计划的通知》(浙政发〔2024〕11 号)符合性分析 表1-8 《浙江省人民政府关于印发浙江省空气质量持续改善行动计划的通知》(浙政发〔2024〕11号)符合性分析

	序号	计划相关内容	具体要求	本项目情况	是否符合
其他符合性分析	1	二、优化产业结构, 推动产业高质量发 展	(一)源头优化产业准入。坚决遏制"两高一低"(高耗能、高排放、低水平)项目盲目上马,新改扩建"两高一低"项目严格落实国家产业规划、产业政策、生态环境分区管控方案规划环评、项目环评、节能审查、产能置换、重点污染物总量控制、污染物排放区域削减、碳排放达峰目标等相关要求,一般应达到大气污染防治绩效 A 级(引领性)水平、采用清洁运输方式。新改扩建项目应对照《工业重点领域能效标杆水平和基准水平》中的能效标杆水平建设实施。涉及产能置换的项目,被置换产能及其配套设施关停后,新改扩建项目方可投立。推动石化产业链"控油增化"。(责任单位:省发展改革委、省经信厅、省生态环境厅省能源局,各市、县(市区)政府。各单位按职责分工负责,下同。以下均需各市、县(市区)政府落实,不再列出)	本项目为锻件及粉末 冶金制品制造,生产 工艺中含锻压配套的 炼钢(不属于编钢企 业),不属于"两目仍 一低"项目。项目仍 严格落实国家产业整 划、产业政策、生态 环境分区管控方案则 划环评、项目环评、 节能审查、产能置换、 重点污染物排放区域 削减等相关要求。	符合
			(二)推进产业结构调整。严格落实《产业结构调整指导目录(2024年本)》,进一步提高落后产能能耗、环保、质量、安全、技术等要求,依法依规加快退出重点行业落后产能。鼓励现有高耗能项目参照标杆水平要求实施技术改造,加大涉气行业落后工艺装备淘汰和限制类工艺装备的改造提升。加快推进6000万标砖/年以下(不含)的烧结砖及烧结空心砌块生产线等限制类产能升级改造和退出,支持发展绿色低碳建筑材料制造产业。推动长流程炼钢企业减量置换改造,优化整合短流程炼钢和独立热轧产能,到2025年全省钢铁生产废钢比大于40%。加快推进水泥生产重点地区水泥熟料产能整合,到2025年完成不少于8条2500吨/日及以下熟料生产线整合退出。(责任单位:省发展改革委、省经信厅、省生态环境厅、省应急管理厅、省市场监管局、省能源局)	本项目符合《产业结构调整指导目录》(2024年本),不涉及落后工艺装备淘汰和限制类工艺装备。	符合
	2	三、优化能源结构, 加速能源低碳化转	(一)大力发展清洁低碳能源。到 2025 年,非化石能源消费比重达到 24%,电能占终端能源消费比重达到 40%左右,新能源电力装机增至 4500	本项目采用电能、天 然气等清洁能源。	符合

	型	万千瓦以上,天然气消费量达到 200 亿立方米左右。(责任单位:省发		
		展改革委、省建设厅、省能源局)		
		(二) 严格调控煤炭消费总量。制定实施国家重点区域煤炭消费总量调		
		控方案, 重点压减非电力行业用煤。杭州市、宁波市、湖州市、嘉兴市、		
		绍兴市和舟山市新改扩建用煤项目依法实行煤炭减量替代,替代方案不		
		完善的不予审批。不得将使用石油焦、焦炭、兰炭等高污染然料作为煤		
		炭减量替代措施。原则上不再新增自备燃煤机组,推动具备条件的既有		
		自备燃煤机组淘汰关停,鼓励利用公用电、大型热电联产、清洁能源等	本项目不涉及煤炭。	不涉及
		替代现有自备燃煤机组。对支撑电力稳定供应、电网安全运行、清洁能		
		源大规模并网消纳的煤电项目及其用煤量应予以合理保障。在保障能源		
		安全供应的前提下,到 2025 年杭州市、宁波市、湖州市、嘉兴市、绍兴		
其		市和舟山市煤炭消费量较 2020 年下降 5%左右。(责任单位:省发展改		
他		革委、省生态环境厅、省能源局)		
符		(三)加快推动锅炉整合提升。各地要将燃煤供热锅炉替代项目纳入城		
合		镇供热规划,原则上不再新建除集中供暖外的燃煤锅炉。新建容量在10		
性		蒸吨/小时及以下工业锅炉一般应优先选用蓄热式电加热锅炉、冷凝式燃		
分		气锅炉。各地要优化供热规划,支持统调火电、核电承担集中供热功能,		
析		推动淘汰供热范围内燃煤锅炉和燃煤热电机组。鼓励 65 蒸吨/小时以下		
		燃煤锅户实施清洁能源替代,立即淘汰 35 蒸吨/小时以下燃煤锅炉。充		
		分发挥 30 万千瓦及以上热电联产电厂的供热能力,对其供热半径 30 公	小宝口子处力,根 型	- 7-2015-77
		里范围内的燃煤锅炉和落后燃煤小热电机组(令自备电厂)进行关停或	本项目不涉及煤炭。	不涉及
		整合。支持30万千瓦及以上燃煤发电机组进行供热改造或异地迁建为热		
		电联产机组。到 2025 年,基本淘汰 35 蒸吨/小时燃煤锅炉,基本淘汰茶		
		水炉、经营性炉灶、储粮烘干设备、农产品加工等燃煤设施,完成全省		
		2 蒸吨/小时及以下生物质锅炉等落后产品更新改造任务。(责任单位:		
		省发展改革委、省生态环境厅、省农业农村厅、省市场监管局、省粮食		
		物资局、省能源局)		
		(四)实施工业炉窑清洁能源替代。全省不再新增燃料类煤气发生炉,		
		新改扩建加热炉、热处理炉、干燥炉、熔化炉原则上采用清洁低碳能源,	本项目采用电加热炉	<i>₹</i> ⁄₹ ∧
		燃料类煤气发生炉全面实行清洁能源替代,逐步淘汰间歇式固定床煤气	及天然气加热炉。	符合
		发生炉。加快玻璃行业清洁能源替代,淘汰石油焦、煤等高污染燃料。	•	
1	L			

III 併化於海娃物	(责任单位:省发展改革委、省经信厅、省生态环境厅、省能源局) (一)大力推行重点领域清洁运输。大宗货物中长距离运输优先采用铁路、水路运输,短距离运输优先采用封闭式皮带廊道或新能源车船。新建及迁建大宗货物年运量 150 万吨以上的物流园区、工矿企业和储煤基地,原则上接入铁路专用线或管道。钢铁、水泥、火电(含热电)、有色金属、石化、煤化工等行业新改扩建项目应采用清洁运输或国六及以上排放标准车辆,推行安装运输车辆门禁监管系统。宁波舟山港、大型石化企业探索开辟绿色货运通道,支持宁波市北仑区、镇海区开展重点园区、港区智慧门禁监管试点。到 2025 年,宁波舟山港集装箱清洁运输比例达到 20%,铁矿石、煤炭等清洁运输比例力争达到 90%;钢铁、燃煤火电行业大宗货物运输全部采用清洁运输或国六及以上排放标准车辆,水泥熟料行业一半以上产能实现大宗货物清洁运输或国六及以上排放标准车辆运输;全省淘汰国四及以下排放标准柴油货车8万辆以上。到 2027 年,水泥熟料、有色金属冶炼行业全部实现大宗货物清洁运输或国六及以上排放标准车辆运输;全省淘汰国四及以下排放标准柴油货车8万辆以上。到 2027 年,水泥熟料、有色金属冶炼行业全部实现大宗货物清洁运输或国六及以上排放标准车辆运输。(责任单位:省发展改革委、省经信厅、	本项目不涉及大宗货 物运输。	不涉及
四、优化交通结构, 提高运输清洁化比 例	省公安厅省生态环境厅、省交通运输厅、省海洋经济厅、省能源局、浙 工海事局、杭州铁路办事处) (二)积极打造绿色高效城市交通。持续推进城市公交车电动化替代, 支持老旧新能源公交年更新换代。新增或更新公交车新能源车辆占比达 到95%,新增或更新的出租、城市物流记送、轻型环卫等车辆,新能源 车比例不低于80%。推动杭州市、宁波市、金华市采取公铁联运等"外集 内配"物流方式。支持安吉县等开展全县域工程运输车辆和作业机械的新 能原替换。推进城乡公共充换电网络建设,在高速公路服务区充电设施 全覆盖基础上进一步增强快充能力。2024年底前,设区城市所辖区全面 实施国三排放标准柴油货车限行;2025年11月1日起,所有县(市)全面 实施国三排放标准柴油货车限行。加快推进城市工程运输车辆新能源化, 鼓励有条件的地方率先在混凝土、渣土运输等领域开展新能源替代。到 2025年,设区城市主城区、所辖县(市)新能源混凝土、渣土运输车保有 量明显提升。(责任单位:省发展改革委、省公安厅、省生态环境厅、 省建设厅、省交通运输厅、省商务厅、省能原局、省邮政管理局、杭州 铁路办事处)	本项目不涉及城市交 通内容。	不涉及

		(三)提升非道路移动源清洁化水平。开展全省货运船舶燃油质量抽检工作,加快内河老旧船舶报废更新,大力支持新能源动力船舶发展。加快推进港口、机场内作业车辆和机械新能源更新改造。推进港口岸电设施建设和船舶受电装置改造,提高岸电使用率。加强非道路移动机械抽测,强化编码登记,做到应登尽登。到 2025 年,基本淘汰国二及以下排放标准柴油叉车、国一及以下排放标准非道路移动机械:宁波舟山港基本淘汰国四及以下排放标准内部道路运输车辆:全省民用机场更新场内新能源车辆 500 辆以上,机场桥电使用率达到 95%以上;基本消除非道路移动机械、船舶及铁路机车"冒黑烟"现象。(责任单位:省发展改革委、省生态环境厅、省交通运输厅、省农业农村厅、省海洋经济厅、省能源局、浙江海事局、民航浙江安全监管局)	本项目采用电叉车等非道路移动机械。	符合
		(一)加强秸秆综合利用和露天禁烧。坚持疏堵结合、标本兼治。健全秸秆收储运体系,提升科学还田水平,加强秸秆利用科技支撑。到2024年,秸秆肥料化、饲料化、能源化、基料化和原料化等"五化"离田利用率达到30%,2027年达到45%。建立省市县乡四级秸科露天禁烧管控责任体系,以乡镇(街道)、村(社区)为主体落实网格化管理。加快建设完善露天焚烧高位瞭望设施和监控平台,落实秸秆露天焚烧"1530"(1分钟发现、5分钟响应、30分钟处置)闭环处置机制。加强部门联动,在播种、农收等重点时段开展专项巡查。(责任单位:省生态环境厅、省农业农村厅)	本项目不涉及秸秆综 合利用和露天禁烧。	不涉及
4	五、强化面源综合治 理,推进智慧化监管		本项目施工场地严格 落实扬尘防控长效机 制。	符合
		(三)推进矿山综合整治。新建矿山依法依规履行各项准入手续,一般 应采用皮带长廊、水运、铁路等清洁运输方式,鼓励采用新能源运输车 辆和矿山机械。新建露天矿山严格落实矿山粉尘防治措施,建设扬尘监	本项目不涉及矿山。	不涉及

	T		T	1
		测设施。对限期整改仍不达标的矿山,根据安全生产、水土保持、生态 环境等要求依法关闭。(责任单位:省自然资源厅、省生态环境厅、省 水利厅、省林业局)		
		(四)加强重点领域恶臭异味治理。开展工业园区、重点企业、市政设施和畜禽养殖领域恶臭异味排查整治,加快解决群众反映强烈的恶臭异味扰民问题;投诉集中的工业园区、重点企业要安装运行在线监测系统。控制农业源氨排放,研究推广氮肥减量增效技术,加强氮肥等行业大气氨排放治理,加大畜禽养殖粪污资源化利用和无害化处理力度。严格居民楼附近餐饮服务单位布局管理,拟开设餐饮服务单位的建筑应设计建设专用烟道,鼓励有条件的地方实施治理设施第三方运维管理和在线监控。(责任单位:省司法厅(省综合执法办)、省生态环境厅、省建设厅、省农业农村厅、省市场监管局)	本项目不涉及恶臭。	不涉及
		(一)加快重点行业超低排放改造。2024年底前,所有钢铁企业基本完成超低排放改造;无法稳定达到超低排放限值的燃煤火电、自备燃煤锅炉实施烟气治理升级改造,采取选择性催化还原(SCR)脱硝等高效治理工艺。到 2025年6月底,水泥行业全面完成有组织、无组织超低排放改造。2024年启动生活垃圾焚烧行业超低排放改造工作,2027年基本完成改造任务。(责任单位:省生态环境厅牵头,省发展改革委、省建设厅、省交通运输厅、省能源局等按职责分工负责)	本项目不属于钢铁企业,生产工艺中含锻压配套的炼钢工序, 炼钢车间拟实施超低排放改造。	符合
5	六、强化多污染物减排,提升废气治理绩效	(二)全面推进含 VOCs 原辅材料和产品源头替代。新改扩建项目优先生产、使用非溶剂型 VOCs 含量涂料、油墨、胶粘剂、清洗剂等产品和原辅材料,原则上不得人为添加卤代烃物质。生产、销售、进口、使用等环节严格执行 VOCs 含量限值标准。钢结构、房屋建筑、市政工程、交通工程等领域全面推广使用非溶剂型 VOCs 含量产品。全面推进重点行业 VOCs 源头替代,汽车整车、工程机械、车辆零部件、木质家具、船舶制造等行业,以及吸收性承印物凹版印刷、软包装复合、纺织品复合、家具胶粘等工序,实现溶剂型原辅材料"应替尽替"。(责任单位:省发展改革委、省经信厅、省生态环境厅、省建设厅、省交通运输厅、省市场监管局、省能源局、杭州海关、宁波海关)	本项目不涉及 VOCs 原辅材料、产品。	不涉及
		(三)深化 VOCs 综合治理。持续开展低效失效 VOCs 治理设施排查整治,除恶臭异味治理外,全面淘汰低温等离子、光氧化、光催化废气治	本项目不涉及低温等 离子、光氧化、光催	不涉及

理设施。推进储罐使用低泄漏的呼吸阀、紧急泄压阀,定期开展密封性检测。污水处理场所高浓度有机废气单独收集处理,含 VOCs 有机废水储罐、装置区集水井(池)有机废气密闭收集处理。石化、化工、化纤、油品仓储等企业开停工、检维修期间,及时收集处理退料、清洗、吹扫等作业产生的 VOCs 废气;不得将火炬燃烧装置作为日常大气污染治理设施。2024 年底前,石化、化工行业集中的县(市、区)实现统一的泄漏检测与修复(LDAR)数字化管理,各设区市建立 VOCs 治理用活性炭集中再生监管服务平台。(责任单位:省生态环境厅)	化等 VOCs 治理设施。	
(四)推进重点行业提级改造。全面开展锅炉和工业炉窑低效污染治理设施排查和整治,强化工业源烟气治理氨逃逸防控,完成燃气锅炉低氮燃烧改造。强化治污设施运行维护,减少非正常工况排放,加强废气治理设施旁路管理,确保工业企业全面稳定达标排放。培育创建一批重点行业大气污染防治绩效 A 级(引领性)企业。到 2025 年,配备玻璃熔窑的玻璃企业基本达到 A 级,50%的石化企业达到 A 级;到 2027 年,石化企业基本达到 A 级。(责任单位:省生态环境厅牵头,省发展改革委、省经信厅、省能源局等按职责分工负责)	本项目按要求实施。	符合

5、《关于推动铸造和锻压行业高质量发展的指导意见》符合性分析

表1-9 《关于推动铸造和锻压行业高质量发展的指导意见》(工信部联通装(2023)40号)相符性分析

	And the Marane Language And Marane Language And Marane Mar						
序号	具体要求	本项目情况					
1	发展先进锻压工艺与装备。重点发展精密结构件高速冲压、超高强板材深拉深、高强轻质合金板材冲击液压成形、复杂异型结构旋压、高速精密多工位锻造、冷热径向锻造、冲锻复合近净成形、短流程模锻及自由锻、精密锻造、粉末精密锻造、数字化饭金制作成形中心、数字化高效通用零件加工中心等先进锻压工艺与装备。	本项目属于金属制品业中的 C3393 锻件生产,不属于钢铁行业,不属于有色金属冶炼行业;该项目产品采用锻造工艺,不涉及铸造工艺,本项目产品为锻件,采用的工艺属于短流程模锻及自由锻、精密锻造的范畴,属于《关于推动铸造和锻压行业高质量发展的指导意见》(工信部联通装(2023)40号)中重点发展的项目。					
2	推进产业结构优化。严格执行节能、环保、质量、安全技术等相关法律法规标准和《产	对照《产业结构调整指导目录(2024年					
	业结构调整指导目录》等政策,依法依规淘汰工艺装备落后、污染物排放不达标、生	本)》,本项目生产的锻件产品属于其					

产安全无保障的落后产能。鼓励大气污染防治重点区域加大淘汰落后力度。铸造企业
不得采用无芯工频感应电炉、无磁扼(0.25吨)铝壳中频感应电炉、水玻璃熔模精密铸造
氯化按硬化模壳、铝合金六氯乙烷精炼等淘汰类工艺和装备。加快存量项目升级改造,
推进企业合理选择低污染、低能耗、经济高效的先进工艺技术,提升行业竞争能力。
强化铸造和锻压与装备制造业协同布局,引导具备条件的企业入园集聚发展,提升产
业链供应链协同配套能力,构建布局合理、错位互补、供需联动、协同发展的产业格
局。
规范行业监督管理。系统科学有序推进行业转型升级,避免政策执行"一刀切"和"层层

中的"十四、机械,11、关键铸件、锻件: 高强钢锻件,海洋工程装备领域用高性 能关键铸件、锻件"等范畴,属于其中的 鼓励类项目。

规范行业监督管理。系统科学有序推进行业转型升级,避免政策执行"一刀切"和"层层加码"。充分发挥行业自治作用,加强行业自律建设。推动修订《铸造企业规范条件》(T/CFA0310021),鼓励地方参照该条件引导铸造企业规范发展。严格区分锻压行业和钢铁行业生产工艺特征特点,避免锻压配套的炼钢判定为钢铁冶炼生产也严禁以铸造和锻压名义违规新增钢铁产能、违规生产钢坯钢锭及上市销售。

本项目不属于新增钢铁产能、违规生产 钢坯钢锭及上市销售的范畴。

6、《浙江省重金属污染防控工作方案》符合性分析

3

表 1-10 《浙江省重金属污染防控工作方案》相符性分析

序号	主要任务	具体要求	本项目情况	是否符合
	一、分类管 理,完善重	1、完善全口径清单动态调整机制。排查以工业固体废物为原料的锌无机化合物工业企业,将其纳入全口径涉重金属重点行业企业清单(以下简称全口径清单); 梳理排查重点行业为主导产业的工业园区,建立涉重金属工业园区清单,2022年9月底前,各市将园区清单书面报送省生态环境厅。完善全口径清单动态更新制度,根据建设项目环评审批、排污许可证核发、环境执法排查和污染整治等情况,及时增补新、改、扩建企业信息和漏报企业信息,动态更新全口径清单,在各设区市生态环境局网站公布,并依法将重点行业企业纳入重点排污单位名录。	本项目不属于重点行 业企业。	不涉及
1	金属污染物 排放管理制 度	2、加强重金属污染物减排分类管理。省生态环境厅根据各市重金属污染物排放量基数和减排潜力,分档下达减排目标;各市应当进一步摸排企业情况,挖掘减排潜力,以结构调整、升级改造和深度治理为主要手段,将减排目标任务落实到相关县(市、区)和具体企业,推动实施一批重金属减排工程,持续减少重金属污染物排放。	本项目布袋除尘后, 能大大减少重金属粉 尘的排放。	符合
		3、推行企业重金属排放总量控制制度。依法将重点行业企业纳入排污许可管理, 探索将重点行业减排企业重金属污染物排放总量要求落实到排污许可证。减排企 业在执行污染物排放标准的同时,应当遵守分解落实到本单位的重金属排放总量	本项目不属于重点行 业企业。	不涉及

		控制要求。重点行业企业适用的污染物排放标准、重点污染物总量控制要求发生变化,需要对排污许可证进行变更的,生态环境部门可依法对排污许可证相应事项进行变更,并载明削减措施,减排量,作为总量替代来源的,应载明出让量和出让去向。到 2025 年,企业排污许可证环境管理台账、自行监测和执行报告数据基本实现完整、可信,有效支撑重点行业企业排放量管理。		
		4、实施重金属排放总量替代管理豁免。在统筹区域环境质量改善目标和重金属环境风险防控水平、高标准落实重金属污染治理要求并严格审批前提下,对实施国家重大发展战略直接相关的重点项目,可在环评审批程序实行重金属污染物排放总量替代管理豁免。对利用涉重金属固体废物的重点行业建设项目,特别是以历史遗留涉重金属固体废物为原料的,在满足利用固体废物种类、原料来源、建设地点、工艺设备和污染治理水平等国家确定的必要条件并严格审批前提下,可在环评审批程序实行重金属污染物排放总量替代管理豁免。具体免办法遵循国家相关规定。	本项目不属于重点行 业企业。	不涉及
		5、严格环境准入管理。纳入全国重金属污染防控重点区域的新、改、扩建重点行业建设项目应遵循重点重金属污染物排放减量替代"原则,减量替代比例不低于 1.2: 1; 其他区域遵循"等量替代"原则。建设单位在提交环境影响评价文件时应明确重点重金属污染物排放总量及来源; 无明确具体总量来源或来源不满足要求的, 不得批准相关环境影响评价文件。总量来源应优先选择同一重点行业内企业削减的重点重金属污染物排放量。	本项目不属于重点行 业企业。	不涉及
2	二、严格准 入,优化涉 重金属产业 结构和布局	6、促进产业结构调整和行业提升。根据《产业结构调整指导目录》、《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》,依法淘汰涉重金属落后产能和化解过剩产能;严格执行生态环境保护等相关法规标准,推动经整改仍达不到要求的产能依法依规关闭退出。禁止新建用汞的电石法(聚)氯乙烯生产工艺。持续推进专业电镀企业入园。新、扩建的重有色金属冶炼、电镀、制革企业优先选择在依法合规设立并经规划环评的产业园区建设。积极协同经信部门优化涉重金属产业布局,提高重点行业企业集聚度和发展质量,以绿色园区、绿色工厂为载体,重点扶持培育一批具有国际一流、全国领先的涉重金属生产和污染治理行业样板园区和龙头企业,带动涉重金属产业做强做优,促进行业绿色高质量发展。	本项目不属于《产业 结构调整指导目录》、 《限期淘汰产生严重 污染环境的工业固体 废物的落后生产工艺 设备名录》限值类、 淘汰类项目。且本项 目不属于重点行业企 业。	符合
3	三、优化交	7、加强清洁生产改造。加强重点行业清洁生产工艺的开发和应用,重点行业企	本项目不属于重点行	不涉及

)玄 /ナ17 15	31. 《1 四工》相位及注表本书员 - 秋阳时见法法史表点块 - 对 - 2.25 复产 - 老 - 5	.п. Д.п.	T
通结构,提	业"十四五"期间依法至少开展一轮强制性清洁生产审核,到 2025 年底,重点	业企业。	
高运输清洁	行业企业达到国内清洁生产先进水平。电镀行业大力推广无氨、无氟、无磷、低		
化比例	毒、低浓度低能耗和少用络合剂的清洁生产工艺,鼓励采用三价铬和无铬钝化工		
	艺。鼓励制革行业开展铬鞣剂替代技术和封闭治理利用技术改造。加强冶炼行业		
	源头防控,减少使用高镉、高砷或高铊的矿石原料,积极推动设备替代改造和工		
	艺提升改造。鼓励企业加强涉重金属行业先进生产工艺和设备的开发与运用,推		
	广采用最佳可行技术和最佳环境实践。		
	8、推动污染深度治理。重有色金属冶炼企业应加强生产车间低空逸散烟气收集		
	处理; 重有色金属矿采选企业要按照规定完善废石堆场、排土场周边雨污分流设		
	施,建设酸性废水收集与处理设施。采用洒水、旋风等简易除尘治理工艺的重有	本项目不属于重有色	
	色金属矿采选企业,应加强废气收集,实施过滤除尘等颗粒物治理升级改造工程。	金属冶炼企业。	不涉及
	推进专业电镀园区、专业电镀企业重金属污染深度治理,严格执行浙江省《电镀	邓、海1日 冰小工ご工 ∘	
	水污染物排放标准》(DB33/2260-2020)推动锌湿法冶炼工艺按有关规定配套建		
	设浸出渣无害化处理系统及硫渣处理设施。		
	9、开展涉镉涉铊企业排查整治行动。开展农用地土壤镉等重金属污染源头防治		
	行动,持续推进耕地周边涉镉等重金属行业企业排查整治。宁波市和衢州市要巩	 本项目不属于涉镉涉	
	固和提升涉铊企业排查整治成效,督促企业严格执行车间或生产设施废水排放口	字项百个两 1 0 隔 0 平 0 平 0 平 0 平 0 平 0 平 0 平 0 平 0 平	不涉及
	达标要求, 对矿石原料、主副产品和生产废物中铊成分进行检测分析, 建立并保	76 1F. 1K. o	
	存检测分析结果台账记录,实现铊元素可核算可追踪。		
	10、推进涉重金属固废和历史遗留问题排查治理。以全域"无废城市"为抓手,	本项目涉重金属固废	
	根抓涉重金属固体废物治理。严格落实涉重金属固体废物的贮存、利用和处置要	根据《危险废物贮存	
	求,持续开展涉重金属固体废物"存量清零"。结合耕地土壤污染"源解析"、	污染控制标准》	
	涉镉排查、工业园区地下水污染扩散管控和建设用地土壤污染修复等专项工作,	(GB18597-2023) 、	符合
	持续开展废渣、超标严重底泥等历史遗留问题排查。根据排查结果建立治理清单,	《危险废物收集贮存	1万亩
	明确治理措施、时限和责任者,对标对表狠抓落实,切实降低涉重金属环境风险	运输技术规范》	
	隐患。鼓励利用卫星遥感、无人机、大数据等手段开展历史遗留重金属污染问题	(HJ2025-2012) 等法	
	排查。	规贮存、利用和处置。	
四、健全制	11、强化重金属污染监控预警。建立健全重金属污染监控预警体系,并与省生态		
度,加强重	环境指挥中心联网,提升数字化智慧监管水平。定期开展铅蓄电池、电镀、制革	本项目不属于重点行	无进五
金属污染监	等重点行业企业及园区排污口、雨水排放口及周边土壤环境的监督性监测。排放	业企业。	不涉及
管执法	锅等重金属的企业,应依法对周边大气锅等重金属沉降及耕地土壤重金属进行定		

		期监测,评估大气重金属沉降造成耕地土壤中锅等重金属累积的风险,并采取防控措施。鼓励重点行业企业在重点部位和关键节点应用重金属污染物自动监测、视频监控和用电(能)监控等智能监控手段,并与生态环境部门联网。鼓励园区建设运行管理监控中心,实时反馈园区企业污染物治理设施运行工况。		
		12、强化涉重金属执法监督力度。将重点行业企业及相关堆场、尾矿库等设施纳入"双随机、一公开"抽查检查对象范围,进行重点监管。加大排污许可证后监管力度,对重金属污染物实际排放量超出许可排放量的企业依法依规处理。加强对涉重金属行业执法检查,依法严厉打击超标排放、不正常运行污染治理设施、非法排放、倾倒、收集、贮存、转移、利用、处置含重金属危险废物等违法违规行为,涉嫌犯罪的,依法移送公安机关依法追究刑事责任。	本项目不属于重点行 业企业。	不涉及
		13、强化涉重金属污染应急管理。重点行业企业应依法依规完善环境风险防范和环境安全隐患排查治理措施,制定环境应急预案,储备相关应急物资,定期开展应急演练。各地要将涉重金属污染应急处置纳入本地突发环境应急预案,加强应急物资储备,定期开展应急演练,不断提升应急处置能力。	本项目不属于重点行 业企业。	不涉及
5	五、一区一 策,强化重 点区域污染 防控	精准科学治理区域重金属污染。重点区域县(市、区)要科学分析、认真研判本地重金属污染防控形势和相关产业发展态势,立足实际,统筹涉重金属产业发展和污染防治,一区(县、市)一策精准实施重金属污染防控,以绿色、低碳、无废为导向,推动涉重金属产业高质量发展和高水平保护。杭州市富阳区要以铜冶炼、铅锌冶炼、电镀等为重点持续深化重点行业整治,自 2023 年起,铅锌冶炼和铜冶炼行业企业执行颗粒物和重点重金属污染物特别排放限值。	本项目不属于重点行 业企业。	不涉及

二、建设项目工程分析

1、项目由来及项目报告类别判定

装备制造业是为国民经济各行业提供装备的战略性、基础性产业,其产业关联度高、吸纳就业能力强、技术资金密集,是各行业产业升级、技术进步的重要保障和国家综合实力的集中体现。我国装备制造业取得了巨大成绩,规模已经位居世界前列,但产业大而不强。高端装备和重大主机装备因所需高端零部件主要依赖进口而陷入了"空壳化"的困境。

以锻造为代表的基础部件是重大装备的核心,直接决定着重大装备的性能、水平和可靠性,是制约我国重大装备发展的瓶颈。中国要成为装备制造业强国,首先必须成为以锻造为代表的基础部件制造强国。

浙江三门太和大型锻造有限公司成立于 2006 年,是一家专业生产大型锻件的企业,位于三门县海游街道上坑工业园区祥和路 58 号。企业于 2007 年委托编制《年产 4 万吨锻件生产线新建项目环境影响报告表》,同年 11 月取得批复(三环发[2007]43 号);又于 2009 年委托编制《年产 3 万吨铸件生产线技改项目环境影响报告表》,为锻件生产线新增了配套的废钢熔化铸造能力,同年 12 月取得批复(三环建[2009]86 号)。上述项目于 2015 年 9 月通过了"三同时"竣工环保验收(三环验[2015]011 号)。至此,企业已批产能为锻件 4 万吨(其中 3 万吨的钢锭通过自产获得,其余 1 万吨钢锭外购)。

经过多年积累沉淀,浙江三门太和大型锻造有限公司现有厂房及产能均已不能满足企业发展的需要。企业拟投资 65000 万元,在位于三门县海游街道上坑工业园区祥和路 58 号的现有厂区的基础上新征 8576m²(12.86 亩)土地,新建部分厂房作为生产场地,对现有生产线进行改扩建,提升现有项目熔炼工艺的同时,扩建产能至年产 12 万吨锻件的生产能力(配套炼钢能力 12 万吨/年)。熔炼设备由现有的 1 台 25t 中频炉,新增 1 台 25tLF 精炼炉、1 台 25t 真空脱气炉、2 台 30t 中频炉、1 台 60t 精炼炉、1 台 100t 真空脱气炉。本项目建成后,企业以祥和路为界分为南北两个地块,南地块用地面积 45037m²;北地块用地面积 17477.2m²,全厂总用地面积 62514.2m²。项目已在三门县发展和改革局备案(备案号:2401-331022-04-01-478592)。本次环评为全厂技改项目,对厂区整体评价,本项目实施后原三门县环境保护局审批的《年产 4 万吨锻件生产线新建项目》(三环发[2007]43 号)、《年产 3 万吨铸件生产线技改项目》(三环建[2009]86 号)整体被本项目替代。

根据工信部联通装【2023】40号文件的精神:严格区分锻压行业和钢铁行业生产工艺特征特点,避免锻压配套的炼钢判定为钢铁冶炼生产,也严禁以铸造和锻压名义违规新增钢铁产能、违规生产钢坯钢锭及上市销售。本项目钢锭全部用于企业自身锻造,锻造后形成一定形状和尺寸的产品,因此判定本项目炼钢属于锻压配套工序,不属于钢铁行业,其国民经济代码应归为3393锻件及粉末冶金制品制造(三门县经济与信息化局对本项目国民经济代码应

建设内容

归为 3393 锻件及粉末冶金制品制造的说明见**附件 2**)。对照生态环境部第 16 号令《建设项目环境影响评价分类管理名录》(2021 年版),应归入《名录》项目类别中"三十、金属制品业 33-68 铸造及其他金属制品制造 339-其他(仅分割、焊接、组装的除外)",应编制报告表。

表2-1 与《建设项目环境影响评价分类管理名录》对照分析

项目类别		项目类别 报告书		登记表	
111	一、金属制品业 33				
68	铸造及其他金属制品制造 339	黑色金属铸造年产 10 万吨及以上的;有色金 属铸造年产 10 万吨及 以上的	其他(仅分割、焊接、 组装的除外)	/	

根据《固定污染源排污许可分类管理名录》(2019 年版),本项目归入"二十八、金属制品业 33-金属表面处理及热处理加工、铸造及其他金属制品制造 339"。本项目属于简化管理,判定过程详见下表 2-2。

表2-2 排污许可分类管理名录对应类别

序号	行业类别	重点管理	简化管理	登记管理	本项目
二十八	、金属制品业33				
80	结构性金属制品制造 331,金属工具制造 332,集装箱及金属包装 容器制造 333,金属丝绳 及其制品制造 334,建筑、安全用金属制品制造 335,搪瓷制品制造 337,金属制日用品制造 338,铸造及其他金属制品制造 339(除黑色金属铸造 3391、有色金属铸造 3392)	涉及通用工 序重点管理 的	涉及通用工序简 化管理的	其他	属于 3393 锻件及粉末冶金制品制造,涉及通用工序简化管理
五十一	、通用工序				
110	工业炉窑	纳入重点排 污单位名录 的	以天然气或者电 为能源的加热 炉、热处理炉、	除纳入重点排污 单位名录的,以 天然气或者电为 能源的加热炉、 热处理炉或者干	未纳入重点 排污单位名 录,涉及以天 然气或者的 为能源的加 热炉,属于登 记管理
111	表面处理	纳入重点排 污单位名录 的	除纳入重点排污 单位名录的,有 电镀工序、酸洗、 抛光(电解抛光 和化学抛光)、 热浸镀(溶剂	其他	涉及淬火,属 于简化管理

	法)、淬火或者		
	钝化等工序的、		
	年使用 10 吨及		
	以上有机溶剂的		

2、项目组成

表2-3 项目主要建设内容

表2-3 项目主要建设内容				
名称		建设内容及规模		
主体	北地块	锯床车间(1F、新增):锯床加工区; 油压车间(1F、新增):1600t油压机锻压区; 成品仓库; 办公楼(5F、新增); 倒班宿舍(3F、新增)。		
工程	南地块	锻造车间1(1F): 锻压区、锯床加工区、铣床加工区、热处理区; 锻造车间2(1F、新增): 锻压区; 锻造车间3(1F、新增): 锻压区; 熔炼车间1(1F): 熔炼区、精炼区、浇铸区; 熔炼车间2(1F、新建): 熔炼区、精炼区、浇铸区。		
辅助 工程	办公区、食宿	办公楼、倒班宿舍位于北地块,食堂位于南地块。		
	供电	由市政供电部门统一供给。		
	供水	由区域供水管网供水。		
公用工程	排水	厂区实行雨、污分流制,雨水接入雨水管网。设备间接冷却水循环使用,不外排;淬火废水定期捞渣,循环使用,不外排;锻造车间室外设有一个冷却池,用于冷却循环水,不外排;初期雨水沉淀后作为室外冷却池的补充水,不外排;生活污水预处理后纳入市政污水管网。		
	供气	管道天然气由三门华润燃气有限公司供给。		
储运	原料、配件、 包材仓库	原料堆场设于熔炼车间 1 东北侧。		
工程	储气间	气瓶等暂存于锻造车间1西北侧。		
	成品仓库	位于北地块。		
环保工程	废气处理设 施	1、1 台 25t 中频炉熔炼废气、1 台 25t LF 精炼炉废气、1 台 25t 真空脱气炉尾气分别收集后合并处理,废气通过布袋除尘器(覆膜滤料)处理后,经 20m 高的排气筒 DA001 高空排放; 2、2 台 30t 中频炉熔炼废气、1 台 60t LF 精炼炉废气、1 台 100t 真空脱气炉尾气分别收集后合并处理,废气通过布袋除尘器(覆膜滤料)处理后,经 20m 高的排气筒 DA002 高空排放; 3、天然气燃烧废气经 20m 高排气筒 DA003、DA004、DA005、DA006 排放; 4、淬火废气收集并经油雾净化器处理后通过 20m 高排气筒 DA007排放。 5、浇铸区废气自然沉降,无组织排放。		
	废水处理设 施	1、中频炉等设备间接冷却水循环利用,不外排; 2、淬火废水定期捞渣后重复利用,不外排; 3、初期雨水沉淀后作为室外冷却池的补充水,不外排;		

建设内容

建
设
内
容

		4、生活污水经隔油池+化粪池预处理后纳管排放,最终经三门县 城市污水处理厂处理达标后外排。
	一般固废堆场	企业已于南地块锻造车间西侧设 1 处一般固废堆场,占地面积约 100m²,一般固废堆场做好防扬散、防流失、防渗漏等措施。
	危废暂存间	企业已在南地块出入口附近设置了 1 处 15m ² 的危废暂存间,改扩建后拟在北地块新增 100m ² 的危废暂存间。危废暂存间需做好防风、防雨、防晒及防渗漏等措施,各类废物分类收集堆放。
依托工程	三门县城市 污水处理厂	三门县城市污水处理厂设计日处理污水 8 万 m³,出水执行《台州市城镇污水处理厂出水指标及标准限值表(试行)》地表水准IV类标准。
	危险废物处 置	危险废物可就近委托危废处置单位处理。

注: 本项目最高厂房高度约为 15m。

3、产品方案及规模

公司产品主要为模具钢,产品方案及规模见下表 2-4,各产品化学成分见表 2-5。

表 2-4 企业产品方案及规模情况

产品名称	年产量(万 吨/年)	备注
H13 锻件	2.0	H13 模具钢广泛应用于制造汽车、摩托车、家电、电子、化工等行业的热挤压、压铸、锻造等模具。在汽车制造领域,H13 模具钢常用于制造发动机、变速器等零部件的压铸模具;在家电行业,常用于制造洗衣机、冰箱等零部件的压铸和锻造模具;在电子行业,常用于制造集成电路、电子元件等产品的封装模具。
P20 锻件	4.5	P20 是一种引进自美国的中碳 Cr-Mo 系塑料模具钢。P20 锻件主要用于热塑性塑胶注塑模具,挤压模具;热塑性塑料吹塑模具;重载模具主要部件;冷结构制件;常用于制造电视机壳,洗衣机,冰箱内壳,水桶等;汽车保险杠等汽车零部件模具等。
718 锻件	4.5	718 锻件主要用于大型模具的型板,高表面要求的家用电器:适用大型镜面塑料模具,如汽车、家电、音像产品等;可用于镜面抛光度高的塑胶模具;适用 PA、POM、PS、PE、PP、ABS等塑料的注塑及吹塑模具;高抛光度及高要求的模具型腔。
45#锻件	1.0	属塑料模具钢。45#锻件主要用于制造强度高的运动件,如透平 机叶轮、压缩机活塞。
锻件合计	12	/

表 2-5 项目主要产品化学成分表(%)

产品名称	С	Si	Mn	P	S	Cr	Ni	Mo	V
H13锻件	0.32-0.45	0.80-1.2	0.2-0.5	≤0.025	≤0.02	4.75-5.5	/	1.1-1.75	0.8-1.2
P20锻件	0.32-0.38	0.2-0.4	0.7-1.0	≤0.025	≤0.02	1.6-2.0	/	0.3-0.55	
718锻件	0.32-0.4	0.2-0.4	1.1-1.5	≤0.015	≤0.01	1.7-2.0	0.9-1.2	0.25-0.4	
45#锻件	0.42-0.58	0.17-0.37	0.5-0.8	≤0.035	≤0.035	/	/	/	/

4、主要生产设施

本项目主要新增生产设备情况见下表 2-6。

		表 2-6 主要生产设备一览表							
	序号	设备名称	型号	环保已核 定数量 (台)	本次新增 数量 (台)	本项目投产后 全厂数量(台)	所在车间		
	1	中频炉	25t	2(1用1番)	0	2(1用1备)			
	2	LF 精炼炉	25t	0	1	1	熔炼车间 1		
	3	真空脱气炉	25t	0	1	1			
	4	螺杆空压机	BLT30A	1	1	2			
	5	中频炉	30t	0	2	2			
	6	LF 精炼炉	60t	0	1	1	熔炼车间 2		
	7	真空脱气炉	100t	0	1	1	始然 于 间 2		
	8	螺杆空压机	BLT30A	0	2	2			
	9	水压机	7000t	0	1	1			
	10	水压机	3150t	0	1	1			
	11	操作机	20t/40t	0	2	2			
	12	电加热炉		0	40	40			
	13	锻造车间水淬池	200m^3	0	1	1			
7=1+	14	锻造车间油淬池	60 m^3	0	1	1			
建设	15	液压金属剪断机		0	1	1			
内内	16	天然气加热炉		1	10	11	锻造车间 1		
容	17	锯床		10	28	38			
17	18	车床		0	2	2			
	19	铣床		8	20	28			
	20	机械手		0	3	3			
	21	取料机	20t	0	2	2			
	22	螺杆空压机	BLT30A	1	0	1			
	23	含油金属屑 离心分离机		1	0	1			
	24	水压机	2500t	0	1	1			
	25	水压机	10000t	0	1	1			
	26	操作机	100t	0	2	2			
	27	天然气加热炉		0	5	5	锻造车间 2		
	28	电加热炉		0	4	4			
	29	螺杆空压机	BLT30A	0	1	1			
	30	取料机	20t	0	1	1			
	31	电液锤	5t	1	1	2			
	32	电液锤	3t	0	1	1			
	33	电液锤	2t	0	1	1	紙 生 左 间 2		
	34	操作机	10t	1	3	4	锻造车间3		
	35	天然气加热炉		5	0	5			
	36	取料机	5t	2	0	2			
	37	油压机	1600t	0	1	1			
	38	操作机	20t	0	1	1	油压车间		
	39	天然气加热炉		0	5	5			

40	取料机	10t	0	1	1		
41	螺杆空压机	BLT30A	0	1	1		
42	锯床		0	40	40	锯床车间	
43	手提光谱仪		1	0	1	存于办公区	
44	光谱仪		1	1	2		
	冷却塔	250 t/h	1	2	3	熔炼车间1室外	
		300 t/h	0	3	3	熔炼车间2室外	
15		/人 +n +块·	250 t/h	3	0	3	锻造车间1室外
45		250 t/h	0	1	1	锻造车间2室外	
		80 t/h	0	1	1	锻造车间3室外	
		80t	0	1	1	油压车间室外	
46	各类行车		11	29	40	运输设备	
47	起重机		0	70	70	坦 棚 以 角	
48	室外冷却池	500m ³	0	1	1	/	

5、项目主要原辅材料及能源

(1) 主要原辅材料及能源消耗情况

表 2-7 主要原材料消耗及能源消耗

_						
	序号	原料名称	消耗量(t/a)	包装	最大暂存量	备注 (工序)
	1	废低碳钢	28500		400t	原料,熔炼
	2	废铬钼钢	7500		100t	原料,熔炼
	3	废模具钢	86500		600t	原料,熔炼
	4	铬铁合金	1370		100t	原料,熔炼/精炼
	5	钼铁合金	290		100t	原料,熔炼/精炼
	6	钒铁合金	250		100t	原料,熔炼/精炼
	7	锰铁合金	650		100t	原料,熔炼/精炼
	8	硅铁合金	1300		100t	原料,熔炼/精炼
	9	硅钙粉	75	25kg/袋	5t	辅料,熔炼/精炼
	10	生石灰	3400	25kg/袋	60t	辅料,熔炼/精炼
	11	萤石(80%)	125	25kg/袋	10t	辅料,熔炼/精炼
	12	精炼剂 (精炼渣)	600	25kg/袋	40t	辅料,精炼
	13	硅钙丝	300		20t	辅料,精炼
	14	铝丝	350		20t	辅料,精炼
	15	石英砂	300	25kg/袋	20t	辅料,浇铸
	16	保护渣	180	25kg/袋	20t	辅料,浇铸
	17	耐火材料	300		20t	炉体维护
	18	乳化液	10	170kg/桶	1.7t	设备维护
	19	润滑油	4.0	170kg/桶	1.7t	设备维护
	20	液压油	45t/3a	170kg/桶	10t	液压设备初装及运行损 耗
	21	淬火油	2.0	170kg/桶	50t	油淬池初次填装量为50t ,极少量产品使用油淬 ,损耗量每年约2.0t

建设内容

22	天然气	1124万立方/a			锻造、热处理
23	氩气	2000瓶/a	40L/瓶		精炼、脱气
24	氧气	15000瓶/a	40L/瓶		
25	丙烷	600瓶/a	20L/瓶	0.7t(100瓶)	
26	电	10857.33万			/
20	也	kWh/a			/
27	水	45827			

(2) 原料要求

1) 企业对进厂原料的要求及控制

本项目采用废钢的基本要求参照《废钢铁》(GB/T4223-2017)执行,《废钢铁》 (GB/T4223-2017)对废钢铁的技术要求如下:

- "5.1 废钢铁应分类
- "5.2 废钢表面无严重及剥落状锈蚀。
- "5.3 废钢铁内不应混有铁合金。
- "5.4 废钢铁表面和器件、打包件内部不应存在泥块、水泥、粘砂、油脂、耐火材料、炉渣、矿渣以及珐琅等,打包块不应包芯、掺杂等。
- "5.5 废钢铁中不应混有炸弹、炮弹等爆炸性武器弹药及其他易燃易爆物品,不应混有两段封闭的管状物、封闭器皿等物品。不应混有橡胶和塑料制品。
- "5.6 废钢铁中不应有成套的机器设备及结构件(如有,则应拆解且压碎或压扁成不可复原状)。各种形状的容器(罐筒等)应全部从轴向割开。机械部件容器(发动机、齿轮箱等)应清除易燃品和润滑剂的残余物。
- "5.7 废钢铁中不应混有其浸出液中有害物质浓度超过 GB5085.3 中鉴别标准值的有害废物。
- "5.8 废钢铁中不应混有其浸出液中超过 GB5085.1 中鉴别标准值即 pH 值不小于 12.5 或不大于 2.0 的夹杂物。
 - "5.9 废钢铁中不应混有多氯联苯含量超过 GB13015 控制标准的有害物。
- "5.10 钢铁中曾经盛装液体和半固体化学物质的容器、管道及其碎片等,应经过技术处理、清洗干净。
 - "5.11 废钢铁中不应混有下列有害物:
 - ——医药废物、非药品、医疗临床废物;
 - ——农药和除草剂废物、含木材防腐剂废物;
 - ——废雾化机、有机溶剂废物;
 - ——精(蒸)馏残渣、焚烧处置残渣;
 - ——感光材料废物;
 - ——铍、六价铬、砷、硒、镉、锑、碲、汞、铊、铅及其化合物的废物,含氟、氰、酚

化合物的废物;

- ——石棉废物;
- ——厨房废物、卫生间废物等。
- "5.12 废钢铁中不应夹杂放射性废物。"
- 2) 对原料辐射预检的要求

根据环境保护部《关于加强废旧金属回收熔炼企业辐射安全监管的通知》(环办函 [2011]920,2011.8.2),企业应做好以下工作:

①所有熔炼企业必须开展辐射监测,发现放射性污染时应立即报告当地环保部门。对已 发现的失控放射源或者被放射性污染的金属要严格控制,实施有效管理,避免流入社会,造 成环境污染和公众健康的损害。

辐射监测数据表明所测金属的放射性水平高于当地天然环境辐射本地水平时,应对其采用伽玛谱仪进行分析,确认是否被放射性污染。

- ②对于 Co-60 活度浓度不大于 100 贝可/千克的金属,经检测核实后可无限制使用;对于 Co-60 活度浓度大于 20000 贝可/千克的金属,应采取集中贮存方式进行处置;对于活度浓度 介于上述两者之间的,熔炼企业应在当地环保部门的监管下对污染金属进行循环再利用。
- ③应贮存处置的被污染的金属,可送交所在地城市放射性废物库或其他有资质的单位进行暂存,使之衰变达到可循环再利用为止。
- ④确保所有废旧金属原料入炉前、产品出厂前进行辐射监测,将放射性指标纳入产品合格指标体系中,并如实做好监测记录,建立监测台帐,发现问题及时报告环保部门。**企业在购置废钢材时首先会对其进行分拣,去除表面污渍明显的材料,后再经光谱仪检测合格后再入厂。**
 - 3) 对原料入炉的要求

进入中频炉的废钢需压块打包后入炉熔炼。

4)废钢、铁合金

废低碳钢、废铬钼钢、废模具钢、铬铁、钼铁、钒铁、锰铁、硅铁等铁合金主要成分见 下表 2-8。

表 2-8 废低碳钢、废铬钼钢、废模具钢、各类铁合金主要成分

名称	主要成分
成 /d 7世 /sq	本项目收购的废低碳钢种类繁多,主要成分为碳、硅、锰、磷和硫,含量约为
废低碳钢	碳0.1%、硅0.4%、锰0.6%、磷0.035%和硫0.035%,其余微量元素<0.03%。
应均	本项目收购的废铬钼钢种类繁多,主要成分为铬、钼、锰,含量约为铬15%、
废铬钼钢	钼1.3%、锰0.6%,其余微量元素<0.03%。
	本项目收购的废模具钢种类繁多,主要成分为碳、硅、锰、磷、硫、铬、镍、
废模具钢	钼、钒,含量约为碳0.32%、硅0.3%、锰0.7%、磷0.015%、硫0.015%、铬1.7%
	、镍0.6%、钼0.5%、钒0.1%。

建设内容

根据建设单位提供资料,本项目回收的废钢均可满足《废钢铁》(GB/T4223-2017)的 技术要求,即:

- 4.3.1.1 废钢的碳含量一般小于 2.0%,硫含量、磷含量一般不大于 0.050%;
- 4.3.1.2 非合金废钢中残余元素应符合以下要求: 镍不大于 0.30%、铬不大于 0.30%、铜不大于 0.30%。除锰、硅以外,其他残余元素含量总和不大于 0.60%。

5) 铁合金

表 2-9 各类铁合金主要成分

名称	主要成分
铬铁	外购铬铁为低铬,主要成分为铬、铁,其中铬含量约25%,此外还含有少量硅
拾 状	(小于2.87%)、碳(小于0.3%)、磷(小于0.032%)等元素
钼铁	外购钼铁主要成分为钼、铁,其中钼含量大于55.5%,此外还含有少量硅(小
相妖	于0.76%)、碳(小于0.03%)、磷(小于0.032%)、铜(小于0.43%)等元素
钒铁	外购钒铁主要成分为钒、铁,其中钒含量大于 50%,此外还含有少量硅(小于
机状	1.6%)、碳(小于0.03%)、磷(小于0.032%)、铜(小于0.43%)等元素
猛铁	外购锰铁主要成分为锰、铁,其中锰含量大于 65%,此外还含有少量硅(小于
地坎	4.5%)、碳(小于7.0%)、磷(小于0.4%)、硫(小于0.03%)等元素
硅铁	外购硅铁主要成分为硅、铁,其中硅含量大于72%,此外还含有少量碳(小于
性状	0.1%)、磷(小于0.3%)、硫(小于0.01%)等元素

(3) 主要辅料理化性质

主要辅料理化性质见下表 2-10。

表 2-10 项目主要辅料理化性质及化学组成一览表

	农 2-10 现日主安福科廷化住灰及化子组成 见衣
名称	理化性子
	硅钙合金是由元素硅、钙和铁组成的复合合金,是一种较为理想的复合脱氧剂、
硅钙粉	脱硫剂。被广泛应用于优质钢、低碳钢、不锈钢等钢种和镍合金、钛基合金等特
1生行初	殊合金的生产当中,并适合作为转炉炼钢车间用的增温剂,还可以作铸铁的孕育
	剂和球墨铸铁生产中的添加剂。
	氧化钙,是一种无机化合物,化学式CaO,俗称生石灰,物理性质是表面白色粉末
生石灰	,不纯者为灰白色,含有杂质时是呈淡黄色或灰色,具有吸湿性。相对密度3.32~3.35
	,熔点2572℃,沸点2850℃,折光率1.838。
	萤石又称氟石,是一种矿物,主要成分为氟化钙(CaF ₂),Ca常被Y和 Ce等稀土
萤石	元素替代,含有少量的 Fe_2O_3 、 SiO_2 和微量的 Cl 、 O_3 等。本项目萤石中氟化钙含量
	约80%。
	石英砂是石英石经破碎而加工成的石英颗粒,石英石是一种非金属矿物质,是一
石英砂	种坚硬、耐磨、化学性能稳定的硅酸盐矿物,其主要成分是SiO ₂ ,石英砂的颜色为
	乳白色或无色半透明状。
	精炼剂(精炼渣)是白色粉末状或颗粒状熔剂,由多种无机盐干燥处理后按一定
精炼剂 精炼剂	比例混合配制而成,主要是用于清除铝液内部的氢和浮游的氧化夹渣。本项目精
作为示川	炼剂主要成分为氧化钙(45-60%)、三氧化二铝(40-55%)、二氧化硅(≤5%)
	、氧化镁(25%)。
保护渣	根据建设单位提供资料,本项目所用保护渣为无氟保护渣,其主要成分为SiO ₂ 40

	~44%、C 11~13%、CaO 12~15%、Al ₂ O ₃ 12~16%、MgO 2~5%、Fe ₂ O ₃ 4~6%
	、Na ₂ O+K ₂ O 3~5%等。保护渣的主要功能包括防止钢水再氧化、减少钢液面的热
	损失、吸收溶解钢水表面的夹杂物、控制钢坯的传热速度以及在结晶器与坯壳之
	间起润滑作用。
	超速淬火油是以深度精制矿物油为基础油,加入抗氧剂、催冷剂等多种精选添加
अंत्र ति अन	剂调合而成,闪点不低于160℃,燃点不低于180℃。适用于汽车、轴承、矿山机
淬火油	械及工模具行业厚大截面及淬透性差的工件淬火工艺。基础油占比90-100%,添加
	剂<10%。

6、设备匹配性分析

(1) 熔炼设备

①中频炉

在整个生产工艺中,中频炉熔炼是制约整个项目产能的关键。本项目用于熔炼的设备包括 1 台 25 吨(置于熔炼车间 1)、2 台 30 吨(置于熔炼车间 2)的钢壳中频炉。

根据设备工艺说明书产能并结合现有项目实际生产情况,项目中频炉每批次加热时间约60min,考虑出料、进料,项目中频炉冶炼周期约90min/炉,日均作业炉次为7炉(日间1炉,夜间6炉),熔炼车间年工作时间以3600h/a计。本项目12万吨/年的产能中,约25%熔炼工作在熔炼车间1完成,其余75%熔炼工作在熔炼车间2完成。各车间中频炉产能匹配详见下表2-11。

单台 设备设计加 生产设备 每批次时间 批次/天 设备产能合计 数量 规格 工能力 7 52500 t/a 90min 熔炼车间 1 25t 1台 中频炉 178500t/a 熔炼车间 2 30t 90min 126000 t/a 2台

表 2-11 中频炉产能配合性核算表

根据物料平衡,项目中频炉年需熔炼钢水约 154745t (熔炼车间 1 约占 38686.3t,熔炼车间 2 约占 116058.7t);由上表可知,本项目选用的中频炉熔炼产能完全能满足项目需要,设备负荷率 86.7%,设备与产能基本匹配。

②精炼炉

表 2-12 精炼炉产能配合性核算表

生产设备		单台 规格	数量	每批次时间	批次/天	设备设计加 工能力	设备产能合计
* * * * * * * * * * * * * * * * * * *	熔炼车间1	25t	1台	40∼50min	7	52500 t/a	178500t/a
精炼炉	熔炼车间 2	60t	1台	40∼50min	7	126000 t/a	1705001/a

根据物料平衡,项目精炼炉年需熔炼钢水约 154745t (熔炼车间 1 约占 38686.3t,熔炼车间 2 约占 116058.7t),由上表可知,本项目选用的精炼炉熔炼产能完全能满足项目需要,设备负荷率 86.7%,设备与产能基本匹配。

③真空脱气炉

表 2-13 真空脱气炉产能配合性核算表

生产设备		单台 规格	数量	每批次时间	批次/天	设备设计加 工能力	设备产能合计
真空脱	熔炼车间 1	25t	1台	40∼50min	7	52500 t/a	262500t/a
气炉	熔炼车间2	100t	1台	40∼50min	7	210000 t/a	2023001/a

由上表可知,本项目选用的精炼炉设备负荷率 45.7%,可满足产能需求。

(2) 浇铸

表 2-14 浇铸产能配合性核算表

生产设备		每批次 浇铸量	每批次 时间	批次/天	设备设计加工 能力	设备产能合计
浅柱	熔炼车间1浇铸 位7个	3t	8min	7	44100 t/a	170100t/a
浇铸	熔炼车间 2 浇铸位 20 个	3t	8min	7	126000 t/a	1701000/a

由上表可知,本项目浇铸工位负荷率70.5%,可满足产能需求。

(3) 锻造设备

本项目锻造工序设备与产能匹配性分析见下表 2-15。

表 2-15 锻造工序产能核算

设备名称	数量 (台)	单台加 工量 (t/h)	单台日运 行时间 (h/d)	年工作时 间(d/a)	设备最大生 产能力(t/a)	产品产能 (t/a)	产品方案 占满负荷 比例	是否匹配
7000t 水压机	1	12	10	300	36000			
3150t 水压机	1	8	10	300	24000			
2500t 水压机	1	8	10	300	24000			
10000t 水压机	1	16	10	300	48000			
5t电液锤	2	4	10	300	12000	120000	66.7%	匹配
3t电液锤	1	2	10	300	6000			
2t电液锤	1	2	10	300	6000			
1600t 油压机	1	8	10	300	24000			
		合计			180000			

由上表可知,本项目选用的锻造设备产能完全能满足项目需要,设备与产能基本匹配。同时,项目熔炼浇铸与锻造的产能可匹配。

7、项目劳动定员及生产班制

项目劳动定员 220 人,熔炼/精炼车间大部分利用低谷电生产,生产时间为 11:00~13:00、22:00~次日 8:00,共 12 小时;其余车间实行两班制生产,每班 8 小时(6:00~22:00);管理人员 8 小时单班制。年工作日为 300 天,厂内设员工食堂和倒班宿舍。

8、项目平面布置图

本次为改扩建项目,项目建成后,企业将分为南、北两个地块,两个地块之间以祥和路为界。南地块在现有项目已征用地的基础上,新征8576m²土地,新建锻造车间2(1F)、锻

造车间 3(1F)、熔炼车间 2(1F)作为生产场地; 北地块原为闲置厂房,本次拟在北地块新设办公楼(5F)、倒班宿舍(3F)、油压车间(1F)、锯床车间(1F)、成品仓库(1F)、危废暂存间 2。南地块用地面积 45037m²; 北地块用地面积 17477.2m²,全厂总用地面积62514.2m²。厂区平面布局如下:

浙江三门太和大型锻造有限公司南地块主出入口位于北侧,厂区由北往南依次布置有门卫室、食堂、危废暂存间 1、锻造车间 1、锻造车间 2、锻造车间 3、熔炼车间 1(内设一般固废堆场、原料堆场)、熔炼车间 2。北地块主出入口位于南侧,厂区由东往西依次布置有门卫室、倒班宿舍、办公楼、危废暂存间 2、油压车间、锯床车间、成品仓库。

布局合理性:本项目生活区与生产区分离,生产区按照生产工艺流程进行合理分区布置。 南地块靠近生态保护红线,已在厂区及生态保护红线之间设置了 10m 以上缓冲带,因此项目 平面布局合理。具体平面布置图见附图 3。

9、物料平衡

(1) 水平衡图

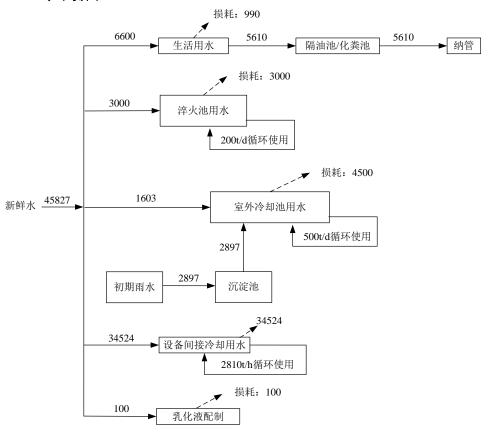


图 2-1 水平衡图 单位: t/a

(2) 物料平衡

表 2-16 项目总物料平衡

	投入情况	1	产出情况			
	名称	数量(t/a)	名称		数量(t/a)	
	各类废钢	122500	成品		120000	
	铬铁合金	1370		熔炼废渣	6238.909	
原料	钼铁合金	290		浇铸水口、 冒口	15867.749	
料	钒铁合金	250	进入	锻造氧化皮	3956.1	
	锰铁合金	650	固废	边角料	7667.2	
	硅铁合金	1300		淬火沉渣	128	
	硅钙粉	75		金属屑	120.1	
	生石灰	3400		集尘灰	750.739	
辅	萤石	125	进入	烟尘	15.870	
料	硅钙丝	300	大气	氟化物	0.282	
	铝丝	350				
	精炼剂	600				
原	浇铸水口、冒口	15867.749			_	
料	锻造边角料	7667.2			_	
	合计	154744.949	合计		154744.949	

表 2-17 重金属-铬物料平衡

投入	情况			产	出情况	
物料名称	消耗量	数量 (折	物料名称		数量	比例
1211 113	(t/a)	纯量 t/a)	124	11 11 11 11 11	(折纯量 t/a)	(%)
废低碳钢	28500	8.550	精炼	H13 锻件	1261.983	
废铬钼钢	7500	1125.000	后的	P20 锻件	997.274	94.637
废模具钢	86500	1470.500	钢水	718 锻件	1025.099	
铬铁合金	1370	342.500	废气		0.033	0.001
钼铁合金	290	0.087	ß	余尘灰	1.648	0.047
钒铁合金	250	0.075		废渣	184.433	5.315
锰铁合金	620	0.186				
硅铁合金	1300	0.390				
回用料 (浇铸水口、	23534.949	523.182				
冒口、锻造边角料)	43334.949	343.164				
合计	/	3470.470		合计	3470.470	100

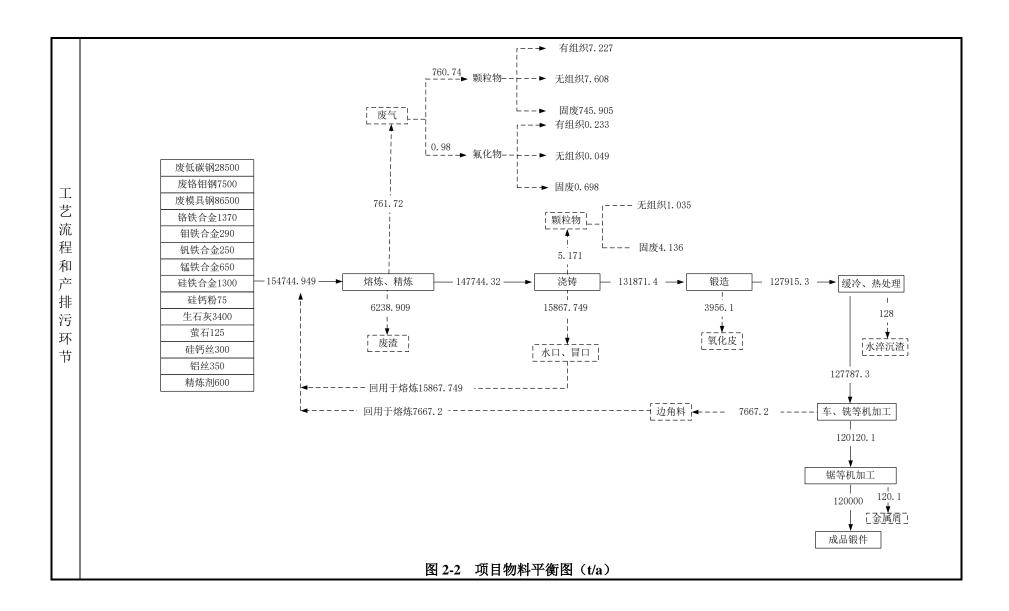
注:根据建设单位提供的资料,废铬钼钢中铬含量约为15%、废模具钢中铬含量约为1.7%,铬铁合金中铬含量为25%,其余铁合金中铬含量极低,以0.03%计。回用料中各元素含量按照产品中的含量折算,其中铬为2.223%。计算时,钢水中各元素含量以表2-5中的均值考虑。

表 2-18 重金属-镍物料平衡

投入	情况		产出情况		
物料名称	消耗量 (t/a)	数量(折纯量t/a)	物料名称	数量 (折纯量 t/a)	比例(%)
废低碳钢	28500	8.550	精炼后的钢水(718 锻件)	582.113	93.336
废铬钼钢	7500	2.250	废气	0.033	0.005

废模具钢	86500	519.000	除尘灰	1.648	0.264
铬铁合金	1370	0.411	废渣	39.883	6.395
钼铁合金	290	0.087			
钒铁合金	250	0.075			
锰铁合金	620	0.186			
硅铁合金	1300	0.390			
回用料(浇铸水口、 冒口、锻造边角料)	23534.949	92.728			
合计	/	623.677	合计	623.677	100

注:根据建设单位提供的资料,废模具钢镍含量约为 0.6%,其余铁合金中镍含量极低,以 0.03%计。回用料中各元素含量按照产品中的含量折算,其中镍为 0.394%。计算时,钢水 中各元素含量以表 2-5 中的均值考虑。


表 2-19 重金属-锰物料平衡

A =							
投入	投入情况			产出情况			
物料名称	消耗量	数量 (折	生 ⁄加	料名称	数量	比例	
1/2/17/11/1/1/1	(t/a)	纯量 t/a)	120	7771171	(折纯量 t/a)	(%)	
废低碳钢	28500	171.000	精炼	H13 锻件	86.184		
废铬钼钢	7500	45.000	相 后的	P20 锻件	470.935	94.175	
废模具钢	86500	605.500	钢水	718 锻件	720.254	94.173	
铬铁合金	1370	0.411	机八	45#锻件	80.397		
钼铁合金	290	0.087		废气	微量	/	
钒铁合金	250	0.075	ß	余尘灰	4.286	0.297	
锰铁合金	620	403.000		废渣	81.193	5.528	
硅铁合金	1300	0.390					
回用料(浇铸水口、	23534.949	216.286					
冒口、锻造边角料)	23334.949	210.280					
合计	/	1441.749	_	合计	1441.749	100	

注:根据建设单位提供的资料,废低碳钢中锰含量约为 0.6%,废铬钼钢中锰含量约为 0.6%、废模具钢中锰含量约为 0.7%,锰铁合金中锰含量为 65%,其余铁合金中锰含量极低,以 0.03%计。回用料中各元素含量按照产品中的含量折算,其中锰为 0.919%。计算时,钢水中各元素含量以表 2-5 中的均值考虑。

表 2-20 氟元素平衡表

	投入情况				产出情况		
物料名称	消耗量 (t/a)	氟化钙 (折纯 量 t/a)			氟元素 (折纯量 t/a)	比例 (%)	
萤石(80%)	125	100	49	废渣	48.020	98.0	
				集尘灰	0.698	1.424	
				废气	0.282	0.576	
合计	/	/	49	合计	49	100	

1、总生产工艺流程及产污环节

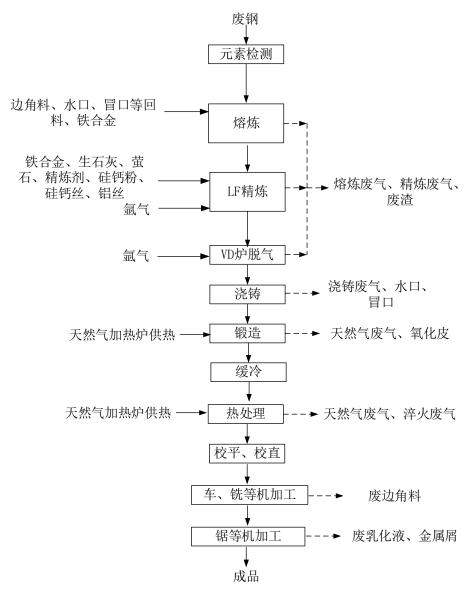


图 2-3 总生产工艺流程图

【工艺流程说明】

(1) 元素检测

首先,企业使用光谱仪对采购的废低碳钢、废铬钼钢、废模具钢进行元素检测,按照元素成分对废钢进行分类。

(2) 中频炉熔炼

中频炉入炉原料可分为废低碳钢、废铬钼钢、废模具钢、合金(铬铁合金、钼铁合金、钒铁合金、锰铁合金、硅铁合金)等,生产时通过加料车将原料送至中频炉内,开始送电,期间加料小车可多次为中频炉加料,直至满炉。熔炼时,中频炉温度升至1600~1650℃左右,将原材料熔炼成钢水,熔炼后的钢水经炉前检验设备化验合格后倒入钢包车出钢。项目中频

炉每批次加热时间约 60min,考虑出料、进料,项目中频炉冶炼周期约 90min/炉,日均作业炉次为 7 炉(日间 1 炉,夜间 6 炉)。中频炉熔炼过程约。中频炉上料、熔炼、出钢等过程产生大量烟气,主要污染物为颗粒物、二噁英类等,此外,会含有少量重金属烟尘;中频炉扒渣过程产生废渣;中频炉需要定期清理更换炉材,形成废耐火材料。

(3) 精炼(LF 炉精炼+真空脱气)

本项目中频炉配套 LF 精炼炉及真空脱气炉用于精炼工序。

LF 炉精炼:熔炼后的钢水进入 LF 炉进行精炼(约 40~50min),加入合金原料、造渣材料(生石灰、萤石、精炼剂)、其他辅料(硅钙粉、硅钙丝、铝丝等等)进行合金微调,加热温度约为 1650℃,将氩气在 LF 炉底部吹入,精炼的目的主要是去除钢材的杂质和低熔点金属。基本原理是通过向钢水内吹入气体,然后利用这些小气泡在上浮过程中吸附氧化夹杂物,并夹带到钢水液面而实现除气和去渣。过程中需要产生大量烟气,主要污染物为颗粒物、氟化物、二噁英、镍及其化合物、铬及其化合物等; LF 炉精炼过程会产生废渣。

真空脱气:

经过 LF 炉精炼的钢水需进入真空脱气炉(VOD 炉)进行进一步提纯,此工序需用时 40~50min。VOD 精炼是将 LF 精炼炉处理后的钢水置于真空室中,同时钢包底部吹入氩气搅拌的一种真空处理方法,其工艺流程如下: LF 精炼炉钢液温度调整到 1620~1650℃,经除渣后,由行车将盛有钢液的钢包调入 VOD 炉真空罐内,人工接通吹氩管,吹氩搅拌,同时进行测温取样;而后,下降罐盖,打开主截止阀,进行真空脱气处理(吹氧脱碳处理);真空处理完毕,关闭主截止阀及破真空,提升罐盖,测温取样;检测成分符合要求后,断开气,由行车将钢包吊至浇铸工位。VOD 精炼主要目的是提高钢水纯度,保证钢种的氢、氧、氮含量达到最低水平并精确调整钢水成分,使夹杂物充分上浮,而有效提高钢的纯洁度,该过程不添加任何物料。尾气排出氩气、氢气、二氧化碳、氮气等气体,真空脱气尾气与熔炼废气、精炼废气一起进入除尘系统进行处理。

(4) 浇铸

精炼后的钢水用行车吊至浇铸车,钢包滑动水口打开,通过中注管直接将钢水注入外购成品钢锭模,待冷却至工艺时间脱模热送至下一道工序。项目设置有定点浇铸区,浇铸时,企业把多个模具放在一起集中浇铸,并用耐火砖连接好浇铸通道,大大减少了浇铸时间,保证了浇铸的质量,减少了水口、冒口率,提高了产品合格率。浇铸过程所使用的保护渣不含氟,不含挥发性成分,因此保护渣本身不会有污染物产生。

钢水倒入成品模具内浇铸成钢锭,浇铸过程产生一定量的烟尘,主要污染物为颗粒物等; 浇铸过程产生水口、冒口。

(5) 锻造

根据锻件要求选用水压机或油压机进行锻压。水压机是一种利用油水平衡控制对锻件进

行静水压的机器,利用水为工作介质,以静压力传递进行工作;水压机粗锻完成的部件再经快压机精锻。油压机是一种通过专用液压油做为工作介质,通过液压泵作为动力源,靠泵的作用力使液压油通过液压管路进入油缸/活塞,使液压油在油箱循环使油缸/活塞循环做功从而完成一定机械动作来作为生产力的一种机械,适用于锻压大型和难变形的工件。本项目锻造采用天然气加热炉加热,产生天然气燃烧废气,此外,锻压过程中有噪声产生。

(6) 热处理

本项目热处理的主要工艺为正火、退火、调质、去应力回火和表面淬火。

正火:将钢材或钢件加热到临界点 AC3 或 ACM 以上的适当温度保持一定时间后在空气中冷却得到珠光体类组织的热处理工艺,一般温度在 700-900℃左右。退火是将工件送至电加热炉缓慢加热到温度 800-900℃,按照产品不同材质及直径大小,保温时间维持 4-8h,然后慢慢自然冷却,以获得接近平衡态组织的工件。回火是工件淬硬后加热到 ACI(加热时珠光体向奥氏体转变的开始温度)一般 450-600℃以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。通过热处理增加产品质量和满足客户要求,以及节能降本,本项目采用电炉、天然气炉或锻后余热对产品进行正火、退火或调质处理,以达到组织均匀,性能一致及具备合格的晶粒度要求。本项目热处理部分采用天然气加热炉加热,产生天然气燃烧废气,此外,热处理过程中有噪声产生。

本项目涉及表面淬火的产品约 4 万吨, 其中 99%为水淬, 约 1%为油淬。水淬池约 200m³, 淬火剂为自来水, 淬火过程中产生的水蒸气对环境的不利影响较小, 水淬池定期补充新鲜水, 经沉淀去渣后循环使用, 不外排; 油淬池约 60m³, 淬火剂为淬火油, 淬火油定期添加, 不外排。工件进入油淬池冷却时, 会产生少量淬火废气。

(7) 锻后机加工

锻造后的半成品件再进行车削铣钻等机加工作业, 机加工过程会有噪声及固体废物产生。

2、主要污染因子

表 2-21 主要污染工序一览表

	• •			
类型	污染环节	污染物名称	污染因子	
	熔炼	熔炼废气	颗粒物、二噁英、镍及其化合物、 铬及其化合物	
	精炼/真空脱气	精炼废气	颗粒物、氟化物、二噁英、镍及其 化合物、铬及其化合物	
废气	浇铸	浇铸废气	颗粒物	
	锻造	天然气燃烧废气	颗粒物、SO ₂ 、NOx	
	热处理	大然气燃烧废气		
	油淬	淬火废气	颗粒物(油雾)、非甲烷总烃	
	员工生活	食堂油烟	油烟	
	设备间接冷却	间接冷却水	/	
废水	水淬	淬火废水	水温、SS	
	员工日常	生活污水	COD _{Cr} 、氨氮、BOD ₅ 、动植物油	

题

	熔炼、精炼	废渣	废渣
	熔炼	废耐火材料	废耐火材料
	浇铸	浇铸冒口、水口	钢材
	锻造	氧化皮	钢材
	废气处理	集尘灰	集尘灰
	废气处理	废布袋	废布袋
	水淬	淬火沉渣	沉渣
	车床、铣床加工	边角料	钢材
固废	乳化液等包装	沾染化学品的废包 装材料	沾染乳化液
	油类物质包装	废油桶	沾染矿物油
	其他原辅料包装	一般废包装材料	塑料、纸等
	机械设备维护	废润滑油	矿物油
	设备运转	废液压油	矿物油
		废乳化液	油水混合物
	湿式机加工	经规范处置的含油	金属屑
		金属屑	並周月
	日常生产	废劳保用品	手套、抹布
	员工日常	生活垃圾	生活垃圾
噪声	生产及辅助设备运行	设备噪声	噪声

企业于 2007 年委托编制《年产 4 万吨锻件生产线新建项目环境影响报告表》,同年 11 月取得批复(三环发[2007]43 号);又于 2009 年委托编制《年产 3 万吨铸件生产线技改项目环境影响报告表》,为锻件生产线新增了配套的废钢熔化铸造能力,同年 12 月取得批复(三环建[2009]86 号)。上述项目于 2015 年 9 月通过了"三同时"竣工环保验收(三环验[2015]011 号)。至此,企业已批产能为锻件 4 万吨(其中 3 万吨的钢锭通过自产获得,其余 1 万吨钢锭外购)。

1、现有项目审批、验收及排污许可情况

企业现有项目环评审批、验收及排污许可情况见下表 2-22。

表 2-22 现有项目环评审批、验收及排污许可情况一览表

项目名称	建设内容	环评批复文号	审批时间	验收情况	排污许可情况	运行 情况
年产4万吨 锻件生产线 新建项目	年产4万吨锻 件	三环发 [2007]43 号	2007.11.12	于 2015 年 10 月通过	己完成排污许	
年产3万吨 铸件生产线 技改项目	年产3万吨铸件(对原有项目进行技改,新增废钢熔炼工序,总锻造能力不变)	三环建 [2009]86 号	2009.12.28	"三同时"竣 工环保验收 (三环验 [2015]011 号)	可证申领,编 号 913310227877 365045001W	正常 运行

2、现有项目产品方案

企业现有项目产品方案见下表 2-23。

表 2-23 现有项目产品方案

产品	己批规模	己验规模	2024 年产能	备注
H13 锻件、P20 锻件、 718 锻件	3 万吨/年	3 万吨/年	2.7 万吨/年	钢锭通过自产获得
45#锻件	1 万吨/年	1 万吨/年	0.9 万吨/年	外购钢锭
锻件合计	4 万吨/年	4 万吨/年	3.6 万吨/年	/

注:已批已验产能中含3万吨/年的废钢熔炼产能(其余1万吨/年的钢锭外购),为企业锻造产能的配套工序,钢锭不外售。

3、现有项目原辅材料汇总

根据现场踏勘及企业统计的材料,现有项目原辅料消耗见下表 2-24。

表 2-24 现有项目原辅材料消耗情况汇总

序号	名称	单位	环保核定量	2024 年消耗量	折算达产消耗量
1	钢锭	t/a	10100	9080	10089
2	废钢	t/a	31840	28600	31778
3	造渣材料	t/a	30	27	30
4	天然气	万 m³/a	395	351	390
5	耐火材料	t/a	未体现	90	100
6	氩气	瓶/a	未体现	720	800
7	氧气	瓶/a	未体现	4500	5000
8	丙烷	瓶/a	未体现	180	200
9	乳化液	t/a	未体现	2.7	3.0
10	润滑油	t/a	未体现	2.25	2.5
11	液压油	t/a	未体现	7.2	8

4、现有项目主要生产设备

表 2-25 设备清单汇总

	2.7.10.1						
序	设备名称	设备数量		变化	备注		
号	以留石你	原审批数量*	现状实际设备数量	情况	台 往		
1	25t 中频感应炉	2台(1用1备)	2台(1用1备)	0	/		
2	加热炉	6台	6 台	0	验收时已改为 天然气加热炉		
3	5t 电液锤	1台	1台	0	/		
4	5t 操作机锤	1台	1台	0	/		
5	立式锯床	10 台	10 台	0	/		
6	铣床	8台	8台	0	/		
7	平面磨	1台	0台	-1	/		
8	吊车	9台	9台	0	/		
9	各类行车	11 台	11 台	0			
10	吊车	9台	9台	0	/		

注:*原审批包括原环评及验收。2台空压机,2个光谱仪等辅助设备实际存在,原环评未体现。

5、现有项目平面布置

浙江三门太和大型锻造有限公司厂址位于三门县海游街道上坑工业园区祥和路 58 号,厂区占地约 36461m²,主出入口位于北侧,面向祥和路。厂区由北往南依次布置有门卫室、食堂/倒班宿舍、危废暂存间、锻造车间 1、熔炼车间 1(内设一般固废堆场、原料堆场)。

6、现有项目生产班制及劳动定员

项目劳动定员 100 人,实行单班制生产,每班 8 小时。年工作日为 300 天,厂内设员工食堂和倒班宿舍。

6、现有项目生产工艺

现有项目生产工艺流程与验收时相比取消了磨床加工,除此外与验收基本一致。生产工艺流程具体如下图。

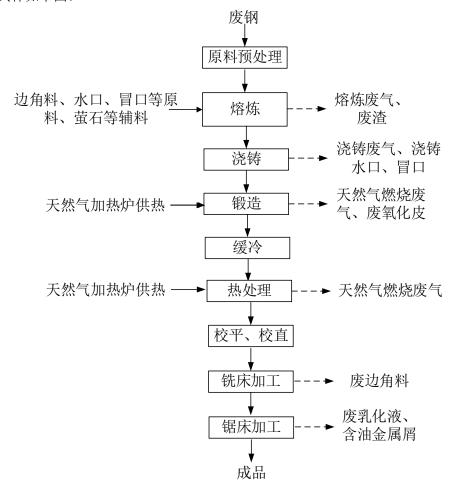


图 2-4 H13 锻件、P20 锻件、718 锻件(3万 t/a)工艺流程图

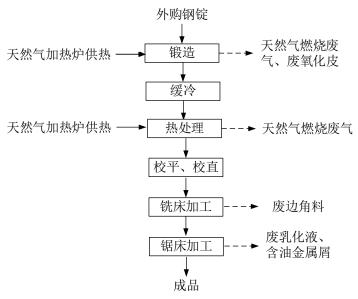


图 2-5 45#锻件 (1 万 t/a) 工艺流程图

6、现有项目污染物排放情况

现有项目核定排放量及实际排放量主要引用自企业"三同时"验收报告及近期例行监测数据,现有项目污染物排放情况详见下表 2-26。

表 2-26 现有项目污染物排放情况一览表 单位: t/a

项目	污染物		现有项目已核定排放 量	现有项目实际达产 排放量 [®]
		水量	1530	1400
废水	生活污水	COD_{cr}	0.15 (0.046) ^①	0.042
		氨氮	0.023 (0.002) ^①	0.002
		颗粒物	1.0	7.547
		氟化物	未体现 ^②	0.017
	熔炼废气	二噁英	未体现 ^②	2.40×10^{-10}
		铬及其化合物	未体现 ^②	2.42×10 ⁻³
废气		镍及其化合物	未体现 ^②	2.20×10 ⁻³
	加热炉天然气燃 烧废气	SO_2	$0.79^{^{\odot}}$	0.329
		NO_X	7.39 [®]	3.674
		颗粒物	1.615 [®]	0.514
	食堂油烟	国废气	0.0096	0.0089
	废渣		1500	1435
	废耐火材料		未体现 ^②	100
	废氧化皮		未体现 ^②	950
固废	经规范处置的	含油金属屑	未体现 ^②	42.0
	一般废包	装材料	未体现 ^②	3.0
	废乳化	公液	未体现 ^②	2.2
	沾染化学品的	废包装材料	未体现 ^②	0.4

废含油包装桶	未体现 ^②	2.0
废液压油	未体现 ^②	6.5
废润滑油	未体现 ^②	2.0
废含油手套和抹布	未体现 ^②	0.05
集尘灰	44	22
废布袋	未体现 ^②	0.5
生活垃圾	24	22

注:①环评审批时企业废水处理达《污水综合排放标准》(GB8978-1996)中一级标准后外排,现状企业生活污水经预处理后纳管,最终经三门县城市污水处理厂处理达《台州市城镇污水处理厂出水指标及标准限值表(试行)》准地表水IV类标准后外排,()内废水污染物已根据现执行标准重新核算,即十四五初始排污权核定量。

- ②由于原有项目环评编制年限较早(2009年),部分废气污染因子及固体废物未核算。
- ③2015 年验收时能源已改用为天然气,验收量为 395 万 m^3/a ,审批总量为 SO_2 0.79t/a, NO_x 7.39t/a,颗粒物 1.615t/a,即十四五初始排污权核定量。
- ④废气有组织排放量核算方式为自行监测数据中平均速率×年工作时间 2400h,熔炼废气现集气风量偏小,收集效率以 80%计,去除效率以 98%计。固体废物排放量以产生量体现。

7、现有项目污染防治措施

表2-27 现有项目污染防治措施一览表

项 目	污染物	环评要求的治理措施	验收落实的 治理措施	目前实际采取的治理 措施
废水	生活污水	近期经处理达到《污水综合排放标准》中的一级标准后外排。远期纳入三门县城市污水处理厂处理达标后排放。	经隔油池+化 粪池预处理 达标后纳入 三门县城市 污水处理厂。	经隔油池+化粪池预处 理达标后纳入三门县 城市污水处理厂。
	熔化烟尘	收集后经布袋除尘,高空 排放。	经布袋除尘 器处理后通 过 15m 排气 筒排放。	经布袋除尘器处理后 通过 15m 排气筒排放。
废气	煤气发生、加 热炉废气	改进现有的除尘设施,建议使用静电除尘或麻石文丘里水膜除尘设施,使除尘效率提高到95%及以上,并增加栲胶法脱硫设施,使脱硫效率达到80%以上。	无煤气发生炉,改为天然气加热炉,加热炉废气统一收集后,直接高空排放。	加热炉废气统一收集 后,通过 15m 高排气筒 排放。
	食堂油烟废气	经油烟净化器处理后外 排。	经油烟净化 器处理后外 排。	经油烟净化器处理后 外排。
固	边角料	出售相关企业综合利用。	回用于熔炼。	回用于熔炼。
废	集尘灰	出售相关企业综合利用。	出售相关企 业综合利用。	出售相关企业综合利 用。

	煤渣	作为铺路材料综合利用。	改用天然气 加热炉后产 生量为 0。	/
•	残渣	作为铺路材料综合利用。	无需使用水 膜除尘,产生 量为 0.	/
	焦油	出售相关企业综合利用。	改用天然气 加热炉后产 生量为 0。	/
	废渣	出售相关企业综合利用。	出售相关企 业综合利用。	出售相关企业综合利 用。
	洗涤水	委托有危废处置资质的单 位处置。	不再涉及制 煤气过程,产 生量为0。	/
•	废耐火材料	未体现	未体现	出售相关企业综合利 用。
	废氧化皮	未体现	未体现	出售相关企业综合利 用。
	经规范处置的 含油金属屑	未体现	未体现	出售相关企业综合利 用。
	一般废包装材 料	未体现	未体现	出售相关企业综合利 用。
	废乳化液	未体现	未体现	
•	沾染化学品的 废包装材料	未体现	未体现	委托台州市正通再生
	废含油包装桶	未体现	未体现	资源回收有限公司处 置。
	废液压油	未体现	未体现	且.。
	废润滑油	未体现	未体现	
	废布袋	未体现	未体现	暂存于危废暂存间
	废含油手套和 抹布	未体现	未体现	混入生活垃圾,由环卫 部门清运。
	生活垃圾	委托环卫部门定期清运。	环卫部门定 期清运。	环卫部门定期清运。

8、现有项目污染物排放达标分析

(1) 废气

①熔炼废气有组织排放

根据江苏全威检测有限公司出具的监测报告(报告编号:江苏全威第 20240654 号)、台州三飞检测科技有限公司出具的监测报告(报告编号:报告编号:三飞检测(2025)自字第 0151 号)、台州普洛赛斯检测科技有限公司出具的监测报告(报告编号:普洛赛斯(台)检字第 2024H0936 号),企业在正常工况下,熔炼废气有组织排放检测结果见下表 2-28。

表2-28 现有项目熔炼废气有组织监测结果

采样	采样	检测	样品编	标干烟气	排放浓度	排放速率
点位	时间	项目	号	量(m³/h)	(mg/m^3)	(kg/h)
中频	2024 11 07	二噁	1#	23325	$0.00039 \text{ ng TEQ/m}^3$	9.10×10 ⁻¹²
炉废	2024.11.07	英	2#	24698	$0.00043 \text{ ng TEQ/m}^3$	1.06×10 ⁻¹¹

气排			3#	23362	$0.00032 \text{ ng TEQ/m}^3$	7.48×10^{-12}
放口			平均值	23795	0.00038 ng TEQ/m ³	9.06×10 ⁻¹²
			1#	23600	<20	0.236
	2025 4 2	颗粒	2#	23300	<20	0.233
	2025.4.3	物	3#	23000	<20	0.230
			平均值	23300	<20	0.233
			1#	20400	< 0.06	6.12×10 ⁻⁴
		氟化	2#	20400	< 0.06	6.12×10 ⁻⁴
		物	3#	21200	< 0.06	6.36×10 ⁻⁴
			平均值	20667	< 0.06	6.20×10 ⁻⁴
		始元	1#	20400	< 0.004	8.16×10 ⁻⁵
	2024 10 20	镍及	2#	20400	< 0.004	8.16×10 ⁻⁵
	2024.10.29	其化 合物	3#	21200	< 0.004	8.48×10 ⁻⁵
		百初	平均值	20667	< 0.004	8.27×10 ⁻⁵
		bb TL	1#	20400	< 0.009	9.18×10 ⁻⁵
		铬及	2#	20400	< 0.009	9.18×10 ⁻⁵
		其化	3#	21200	< 0.009	9.54×10 ⁻⁵
		合物	平均值	20667	< 0.009	9.30×10 ⁻⁵
沙士 ①"	"主二小工士	->++人-11-71	1117 1 10 E	7日 65 1/0 北方を	ケートナル・古 マッ	

注: ①"<"表示小于方法检出限。以检出限的 1/2 核算排放速率。

②根据现有项目排污许可证(副本),中频感应炉产生的颗粒物、天然气加热炉燃烧废气产生的颗粒物、二氧化硫、氮氧化物参照执行《铸造工业大气污染物排放标准》(GB39726-2020)中的表 1 大气污染物排放限值。现有项目自行监测方案未体现二噁英、氟化物、镍及其化合物、铬及其化合物等因子,因此现有项目上述因子排放标准按照本项目要求,即二噁英和氟化物排放参照执行《炼钢工业大气污染物排放标准》(GB28664-2012)中表 3 特别排放限值;镍及其化合物排放参照执行《大气污染物综合排放标准》(GB16297-1996)表 2 中排放限值;铬及其化合物参照执行《铁合金工业污染物排放标准》(GB28666-2012)表 6 中特别排放限值。

经检测,正常工况下,企业现有项目熔炼废气排放口颗粒物排放浓度满足《铸造工业大气污染物排放标准》(GB39726-2020)中的相应标准(30mg/m³);二噁英排放浓度满足《炼钢工业大气污染物排放标准》(GB28664-2012)中表 3 特别排放限值(0.5ng-TEQ/m³);氟化物排放浓度满足《炼钢工业大气污染物排放标准》(GB28664-2012)中表 3 特别排放限值(5.0mg/m³);镍及其化合物排放速率、排放浓度能很满足《大气污染物综合排放标准》(GB16297-1996)表 2 中排放限值(0.26kg/h,4.3mg/m³);铬及其化合物排放浓度可满足《铁合金工业污染物排放标准》(GB28666-2012)表 6 中特别排放限值(3.0mg/m³)。

②天然气加热炉废气有组织排放

天然气加热炉废气有组织排放检测结果见下表 2-29。

表2-29 现有项目天然气加热炉废气有组织监测结果

采样 点位	采样 时间	检测 项目	样品编 号	标干烟气 量(m³/h)	烟气含 氧量	实测浓度 (mg/m³)	折算后排 放浓度 (mg/m³)	排放速率 (kg/h)
天然			1#	16500	19.1%	2.2	14.6	0.241
气加	2025.	颗粒	2#	14700	18.7%	2.5	13.4	0.197
热炉	4.3	物	3#	16000	18.7%	2.4	12.9	0.206
废气			平均值	15733	/	/	13.6	0.214

排放		1#	16500	19.1%	11	72	1.188
	氮氧	2#	14700	18.7%	20	107	1.573
	化物	3#	16000	18.7%	21	113	1.808
		平均值	15733	/	/	97.3	1.531
		1#	16500	19.1%	<3	<20	0.165
	二氧	2#	14700	18.7%	<3	<16	0.118
	化硫	3#	16000	18.7%	<3	<16	0.128
		平均值	15733	/	/	8.7	0.137

注: "<"表示小于方法检出限。以检出限的 1/2 核算排放浓度。

正常工况下,企业现有项目天然气加热炉燃烧废气产生的颗粒物、二氧化硫、氮氧化物能满足《铸造工业大气污染物排放标准》(GB39726-2020)中的表1大气污染物排放限值。

③厂界无组织

根据台州三飞检测科技有限公司出具的监测报告(报告编号:三飞检测(2024)自字第0419号),厂界无组织废监测结果见下表 2-30。

 采样点位
 采样时间
 样品编号
 颗粒物(mg/m³)

 1#
 0.326

 2#
 0.318

 3#
 0.363

 4#
 0.308

表2-30 厂界无组织监测结果

根据上表检测结果,厂界无组织排放的颗粒物浓度符合《大气污染物综合排放标准》 (GB16297-1996)中新污染源的二级标准要求(1 mg/m^3)。

(2) 噪声

根据台州三飞检测科技有限公司出具的监测报告(报告编号:三飞检测(2025)自字第 0151号),企在主体设备正常运行的情况下,厂界昼间噪声值为58~62dB(A),能够满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)相应标准,做到达标排放。

9、现有项目总量控制情况

表2-31 现有项目污染物总量控制情况 单位: t/a

序号	项目名称	COD	氨氮	SO_2	NOx	有效期限
1	初始排污权核定量	0.046	0.002	0.79	7.39	2025.12.31
2	现有达产排放量	0.042	0.002	0.329	3.674	/
3	排放增减量	-0.004	0	-0.461	-3.716	/

由上表 2-31 可知,企业 COD、氨氮、 SO_2 、NOx 现有排污权交易量能够满足现有项目污染物总量排放要求。

根据表 2-26 核算,企业已审批颗粒物的排放量为 2.615t/a,颗粒物现状实际达产排放量为 8.061t/a,颗粒物排放量已超出原审批范围。

10、现有项目排污许可证执行情况

经对照《固定污染源排污许可分类管理名录(2019版)》,企业现有项目属于简化管理。

企业已于 2024 年 8 月重新申领了排污许可证,许可证编号为 913310227877365045001W,申 领至今,企业没发生重大变动。企业已按照自行监测方案进行监测和申报。

11、"以新带老"削减情况

本项目实施后现有"年产 4 万吨锻件"生产线整体被替代削减,现有项目不再有污染物产 生及排放。

12、现有项目存在的问题及整改要求

企业现有项目均已完成环评审批、三同时验收、排污许可登记。现有项目已落实环评提 出的各项环保措施,正常运行情况下,污染物均能做到达标排放。

根据现场踏勘,企业存在以下问题,需要整改完善,详见下表 2-32。

表2-32 现有项目存在问题及整改要求

序号	存在问题	整改要求
1	中频炉废气采用移动式侧吸罩收集,运行风量约 25000m³/h,偏小,集气效率偏低,无组织排放量较大。	应按照超低排放要求对现有废气治理措施进行整改。改进收集方式的同时加大 风机运行风量,减少废气无组织排放。
2	企业已审批颗粒物的排放量为 2.615t/a, 现状实际达产排放量为 6.787t/a, 颗粒 物排放量已超出原审批范围。	通过本次改扩建项目重新核定污染物排 放量。
3	由于原有项目环评编制年限较早(2009年),废气中氟化物、二噁英、铬及其化合物、镍及其化合物等污染因子未体现,现有项目废气自行监测中也未做要求。	通过本次改扩建项目重新核定污染物排 放量,企业自行监测计划中补充上述因 子。
4	炼钢车间、原料堆场密闭效果不佳,有 车辆出入。	按照本次改扩建项目要求加强炼钢车 间、原料堆场的密闭性。
5	未设置初期雨水池。	按照本次改扩建项目要求设置初期雨水 池。
6	厂区整体环境不佳,有杂乱物体堆放, 地面存在破损。	要求加强厂区内环境管理,经常清扫厂 区及生产设施。杂物不得随意堆放。地 面破损区域尽快硬化。

三、区域环境质量现状、环境保护目标及评价标准

3.1 环境空气

根据大气环境功能区划分方案,项目所在地为二类功能区,环境空气质量执行《环境空气质量标准》(GB3095-2012)及其修改单(生态环境部公告 2018 年第 29 号)二级标准。根据"大气专项评价"中"7.5 环境质量现状调查",建设项目所在地区域环境空气能满足二类功能区的要求,属于环境空气质量达标区。

项目所在区域环境空气质量中 TSP(日均值)、氟化物(小时值、日均值)均能满足《环境空气质量标准》(GB 3095-2012)二级标准及修改单要求;二噁英(日均值)能满足日本环境厅中央环境审议会制定的环境标准;镍及其化合物(小时值)、非甲烷总烃(一次值)满足大气污染物综合排放标准详解计算标准;铬及其化合物(小时值)能满足苏联工作环境空气和居民区大气中有害无机物的最大允许浓度度限值,项目所在地空气质量现状良好。

3.2 地表水环境

根据《台州市生态环境质量报告书(2023 年度)》,三门河流总体水质为优。9个断面水质均达到或优于III类(II类 88.9%,III类 11.1%),所有断面均满足功能区要求,与上年相比,水质总体保持稳定。项目所在区域地表水属于三门县珠游溪,根据《台州市生态环境质量报告书(2023 年度)》,附近监测断面上叶桥断面全年监测数据及分析结果见下表 3-1。

表 3-1 地表水环境质量监测数据统计及评价结果 单位 mg/L (除 pH 外)

指标类别	pН	DO	耗氧量	COD_{Cr}	BOD ₅	氨氮	总磷	石油类	总氮	LAS
平均值	8	7.8	2.2	13.2	1.6	0.10	0.058	0.03	0.84	0.02
III类标准	6~9	≥5	≤6	≤20	≤4	≤1.0	≤0.2	≤0.05	1.0	0.2
水质类别	I	I	III	I	III	III	III	I	II	I

根据监测结果并对照《地表水环境质量标准》(GB3838-2002),上叶桥断面 pH、化学需氧量、石油类、DO、LAS 水质指标为I类,总氮水质指标为II类,高锰酸盐指数、BOD₅、 氦氮、总磷水质指标均为III类,总体评价为III类,满足III类水功能区的要求。

3.3 声环境

项目厂界外 50m 范围内无声环境保护目标,可不开展声环境现状调查。

3.4 地下水

为了解项目所在区域地下水环境的质量现状,委托台州普洛塞斯检测科技有限公司(报告编号:普洛赛斯(台)检字第2024H0936号)对项目拟建地地下水进行了监测。

1、监测点位和监测时间

监测点位、监测时间、监测项目见下表 3-2。

表3-2 地下水监测因子及监测时间 编号 采样点 监测因子 监测时间 GW1 天然背景离子: K^++Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 CO_3^{2-} 、 项目北地块 HCO₃, Cl, SO₄²; 常规指标: pH、氨氮、硝 GW2 项目南地块 酸盐、亚硝酸盐、总硬度、挥发性酚类、耗氧量、 硫酸盐、氯化物、硫化物、钠、氟化物、氰化物、 碘化物、砷、汞、硒、镉、铁、铜、锌、铝、镍、 GW3 项目西侧 2024.11.6 铬(六价)、铅、锰、溶解性总固体、总大肠菌群、 202411.28 细菌总数、阴离子表面活性剂、亚硝酸盐、硝酸 盐、石油烃,同时记录水温、水位。 GW4 项目西侧 水位 GW5 项目北侧 水位 GW6 项目东侧 水位

2、监测结果及评价

地下水的水位监测结果见下表 3-3。

表3-3 地下水水位监测结果

编号	采样点	纬度	经度	与项目相对	水位埋深
<i>利</i> 州 ラ	八十点	51/文	红汉	方位	(m)
GW1	项目东	121°20′44.18″	29°05′15.56″	E	37.0
GW2	项目厂区内	121°20′40.14″	29°05′13.09″	/	40.3
GW3	项目西	121°20′32.28″	29°05′26.50″	W	36.2
GW4	项目西	121°20′34.66″	29°05′29.03″	W	36.0
GW5	项目北	121°20′44.82″	29°05′20.87″	N	39.2
GW6	项目东	121°21′05.44″	29°05′38.13″	Е	38.9

地下水天然背景离子监测及评价结果见下表 3-4。

表3-4 地下水天然背景离子监测及评价结果

监测点位	GW1	GW2	GW3
$K^+ \pmod{L}$	0.034	0.036	0.037
Na ⁺ (mol/L)	1.557	1.557	1.517
Ca ²⁺ (mol/L)	2.010	2.050	2.040
Mg^{2+} (mol/L)	0.350	0.339	0.337
阳离子合计	3.950	3.981	3.931
CO_3^{2-} (mol/L)	/	/	/
HCO ₃ (mol/L)	3.738	3.705	3.852
Cl ⁻ (mol/L)	0.033	0.034	0.033
SO ₄ ²⁻ (mol/L)	0.023	0.023	0.024
阴离子合计	3.794	3.762	3.909
偏差 (%)	2.01	2.83	0.28

地下水环境现状监测结果及评价见下表 3-5。

测点编号	评价指标	pH(无量 纲)	氨氮	硝酸盐	亚硝酸盐	砷	汞	六价铬	镉	铅	铁	总硬度	溶解性 固体
	检测结果	6.8	0.438	0.016L	0.016L	0.0003L	0.00008	0.006	0.0001L	0.002	0.25	99	209
GW1	标准值	6.5~8.5	≤0.50	≤20	≤1.0	≤0.01	≤0.001	≤0.05	≤0.005	≤0.01	≤0.3	≤450	≤100
	水质类别	I	III	I	I	I	I	I	I	I	III	I	I
	检测结果	6.7	0.395	0.016L	0.016L	0.0003L	0.00008	0.005	0.0001L	0.002	0.26	32	122
GW2	标准值	6.5~8.5	≤0.50	≤20	≤1.0	≤0.01	≤0.001	≤0.05	≤0.005	≤0.01	≤0.3	≤450	≤100
	水质类别	I	III	I	I	I	I	I	I	I	III	I	I
	检测结果	6.8	0.470	0.016L	0.016L	0.0003L	0.00008	0.007	0.0001L	0.002	0.22	47	101
GW3	标准值	6.5~8.5	≤0.50	≤20	≤1.0	≤0.01	≤0.001	≤0.05	≤0.005	≤0.01	≤0.3	≤450	≤100
	水质类别	I	III	I	I	I	I	II	I	I	III	I	I
测点编号	评价指标	氰化物	氟化物	硫酸盐	挥发性酚	氯化物	铜	锌	耗氧量	硫化物	钠	碘化物	硒
	检测结果	0.002L	0.006L	82	0.0003L	10L	0.001	0.56	0.6	0.003L	40.2	0.025L	0.000
GW1	标准值	≤0.05	≤1.0	≤250	≤0.002	≤250	≤1.00	≤1.00	≤3.0	≤0.02	≤200	≤0.08	≤0.0
	水质类别	II	I	II	I	I	I	III	I	II	I	I	I
	检测结果	0.002L	0.006L	54	0.0003L	10L	0.001	0.52	1.0	0.003L	43.0	0.025L	0.000
GW2	标准值	≤0.05	≤1.0	≤250	≤0.002	≤250	≤1.00	≤1.00	≤3.0	≤0.02	≤200	≤0.08	≤0.0
	水质类别	II	I	II	I	I	I	III	I	II	I	I	I
	检测结果	0.002L	0.006L	44	0.0003L	10	0.001L	0.57	0.6	0.003L	42.4	0.025L	0.000
GW3	标准值	≤0.05	≤1.0	≤250	≤0.002	≤250	≤1.00	≤1.00	≤3.0	≤0.02	≤200	≤0.08	≤0.0
	水质类别	II	I	I	I	I	I	III	I	II	I	I	I
测点编号	评价指标	镍	锰	铝	阴离子表 面活性剂	细菌总数 (CFU/ml)	石油烃						
	检测结果	0.00124L	0.04	0.0373	0.05L	95	0.20						
GW1	标准值	≤0.02	≤0.10	≤0.20	≤0.3	≤100	/						
	水质类别	I	I	II	II	III	/						
	检测结果	0.00124L	0.01	0.00861	0.05L	130	0.25						
GW2	标准值	≤0.02	≤0.10	≤0.20	≤0.3	≤100	/						
	水质类别	I	I	I	II	IV	/						
	检测结果	0.00124L	0.01L	0.00115L	0.05L	110	0.21						
GW3	标准值	≤0.02	≤0.10	≤0.20	≤0.3	≤100	/						
	水质类别	I	I	I	II	IV	/					ĺ	

区域环境质量

现状

根据监测结果可知,该区域的地下水八大阴阳离子基本平衡,地下水水质达不到《地下水质量标准》(GB/T14848-2017)III 类标准限值要求,总体水质评价为 IV 类,主要超标因子为细菌总数(IV 类),超标的原因可能是由于农业面源和生活面源污染影响所致。

3.5 土壤环境

为了解项目所在区域土壤环境的质量现状,委托台州普洛塞斯检测科技有限公司(报告编号:普洛赛斯(台)检字第2024H0936号)、江苏全威检测有限公司出具的监测报告(报告编号:江苏全威第20240654号)对项目拟建地土壤进行了监测。

(1) 监测布点及监测指标

表3-6 土壤监测布点及监测指标

区域	点位编 号	纬度	经度	采样要求	监测指标	监测时间
	Z1	121°20′46.78″	29°05′11.59″	柱状样, 0~0.5m、	45 个基本项目、 石油烃、氟化物、 镍、总铬、钼、 钒	
	Z 2	121°20′25.11″	29°05′24.33″	0~0.5m、 0.5m~1.5m、 1.5m~3m 各 取1个样	石油烃、氟化物、 镍、总铬、钼、 钒	2024.11.6
区内	Z3	121°20′44.18″	29°05′15.56″	· 八十十	石油烃、氟化物、 镍、总铬、钼、 钒	
	В1	121°20′44.13″	29°05′10.67″		石油烃、氟化物、 镍、总铬、钼、 钒、二噁英	2024.10.25
	B2	121°20′49.10″	29°05′17.09″	表层样	石油烃、氟化物、 镍、总铬、钼、 钒	
	B3 (农 用地)	121°20′55.78″	0~0		8 个基本项目、石 油烃、氟化物、 镍、总铬、钼、 钒、二噁英	2024.11.6
外外	B4	121°20′45.97″	29°05′20.14″		45 个基本项目、 石油烃、氟化物、 镍、总铬、钼、 钒、二噁英	2024.10.25

- 注: 二噁英监测时间为 2024.11.7。
 - (2) 土壤理化性质调查

土壤理化性质调查见表 3-7~表 3-9。

域
环
境
质
量
现
状

X

表3-7 土壤理化性质调査一览(一)						
	点号		Z1		Z	7.2
	层次	0-0.5m	0.5m~1.5m	1.5m~3.0m	0-0.5m	0.5m~1.5m
	颜色	黄	黄	黑	黄	黑
现场记	结构	团块	柱状	柱状	团块	柱状
录	质地	砂壤土	壤土	壤土	砂壤土	壤土
	砂砾含量%	14	9	4	12	7
	pH 无量纲	8.62	8.51	8.73	8.22	8.47
	阳离子交换量	3.9	4.6	2.8	2.3	1.6
	cmol/kg					
	氧化还原电位	77	/	/	74	/
实验室	mV		,	,		,
测定	渗滤系数	3.61×10 ⁻²	0.11	0.12	6.27×10 ⁻²	0.10
	/mm/min	5.01×10	0.11	0.12	0.27×10	0.10
	土壤容重	1.53	1.27	1.37	1.26	1.58
	/g/cm ³	1.55	1,27	1.57	1.20	1.56
	孔隙度/%	36	43	46	37	41

表 3-8 土壤理化性质调查一览(二)

	点号	Z 2		Z3	
	层次	1.5m~3.0m	0-0.5m	0.5m~1.5m	1.5m~3.0m
	颜色	黑	黄	黑	黑
现场记	结构	柱状	块状	柱状	柱状
录	质地	壤土	砂壤土	壤土	壤土
	砂砾含量%	4	15	11	6
	pH 无量纲	8.07	8.33	8.61	8.28
	阳离子交换量 cmol/kg	3.0	5.0	5.4	4.8
实验室	氧化还原电位 mV	/	71	/	/
测定	渗滤系数 /mm/min	0.14	7.58×10 ⁻²	0.12	0.15
	土壤容重/g/cm³	1.39	1.30	1.45	1.27
	孔隙度/%	52	39	42	44

表 3-9 土壤理化性质调查一览(三)

	点号	B1	B2	В3	B4
	层次	0m-0.2m	0m-0.2m	0m-0.2m	0m-0.2m
	颜色	黄	黑	黄	黄
现场记	结构	团粒	团块	团块	团粒
录	质地	砂壤土	砂壤土	砂壤土	砂土
	砂砾含量%	17	19	16	13
实验室	pH 无量纲	6.77	黑	黄	6.82
头短至 测定	阳离子交换量	2.0	1.4	3.2	2.6
0.17.0	cmol/kg	2.0	2	8.2	2.0

氧化还原电位 mV	64	67	64	63
渗滤系数 /mm/min	0.17	0.21	0.18	0.26
土壤容重/g/cm³	1.41	1.34	1.46	1.22
孔隙度/%	47	51	48	53

(3) 土壤环境质量监测结果及评价

监测结果见表 3-10~表 3-12。

表 3-10 Z1、B2、B3 点位土壤监测结果 单位: mg/kg

衣 3-10 Z1、D2、D3 点位上凑曲侧均未 手位: mg/kg								
检测点号		Z1		B2	第二类用	В3	农用地	
土壤深度(m)	0-0.5	0.5-1.5	1.5-3.0	0-0.2	地筛选值	0-0.2	筛选值	
砷	8.24	8.80	4.80	4.71	60	8.41	25	
镉	0.13	0.12	0.16	0.13	65	0.15	0.3	
六价铬	< 0.5	< 0.5	< 0.5	< 0.5	5.7	-		
铜	30	29	26	24	18000	25	100	
铅	43	57	51	54	800	56	120	
汞	0.098	0.158	0.109	0.126	38	0.020	0.6	
镍	29	32	31	45	900	42	100	
锌	-	-	-	-	-	78	250	
氯甲烷	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	37			
氯乙烯	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	0.43			
1,1-二氯乙烯	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	66			
二氯甲烷	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	616			
反-1,2-二氯乙烯	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³	54			
1,1-二氯乙烷	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	9			
顺-1,2-二氯乙烯	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	596			
氯仿	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	0.9	_	_	
1,1,1-三氯乙烷	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	840	_	_	
四氯化碳	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	2.8			
苯	<1.9×10 ⁻³	<1.9×10 ⁻³	<1.9×10 ⁻³		4	_	_	
1,2-二氯乙烷	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³		5	_		
三氯乙烯	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	2.8			
1,2-二氯丙烷	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	5			
甲苯	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	1200			
1,1,2-三氯乙烷	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	2.8			
四氯乙烯	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10 ⁻³		53			
氯苯	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	270	_	_	
1,1,1,2-四氯乙烷	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	10	_	_	
乙苯	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	28	_		
间,对二甲苯	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³		570	_	_	
邻二甲苯	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	640	_	_	
苯乙烯	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	1290	_	_	
1,1,2,2-四氯乙烷	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	6.8	_	_	
•								

	1,2,3-三氯丙烷	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	0.5	_	_
	1,4-二氯苯	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	20	_	_
	1,2-二氯苯	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	560	_	_
	硝基苯	< 0.09	< 0.09	< 0.09	< 0.09	76	_	_
	2-氯酚	< 0.06	< 0.06	< 0.06	< 0.06	2256	_	_
	苯并 (a)蒽	< 0.10	< 0.10	< 0.10	< 0.10	15	_	_
	苯并 (a) 芘	< 0.10	< 0.10	< 0.10	< 0.10	1.5	_	_
	苯并 (b)荧蒽	< 0.20	< 0.20	< 0.20	< 0.20	15	_	_
	苯并 (k)荧蒽	< 0.10	< 0.10	< 0.10	< 0.10	151	_	_
	崫	< 0.10	< 0.10	< 0.10	< 0.10	1293	_	_
	二苯并[a,h]蒽	< 0.10	< 0.10	< 0.10	< 0.10	1.5		
	茚并[1,2,3-cd]芘	< 0.10	< 0.10	< 0.10	< 0.10	15	_	_
	萘	< 0.09	< 0.09	< 0.09	< 0.09	70	_	_
	苯胺	<2	<2	<2	<2	260	_	_
	石油烃	57	86	87	93	4500	108	_
	氟化物	372	437	407	307	10000	244	_
	总铬	56	76	64	70	10000	69	
	钼	0.3	0.3	0.2		_	_	_
	钒	47.2	39.4	40.9		752	_	_
	二噁英	-	-		-	4×10 ⁻⁵	0.74×10^{-6}	-
1								

表 3-11 Z1 Z2、Z3 点位土壤监测结果 单位: mg/kg

检测点号	Z2				第二类		
土壤深度(m)	0-0.5	0.5-1.5	1.5-3.0	0-0.5	0.5-1.5	1.5-3.0	用地筛 选值
石油烃	152	70	122	108	69	114	4500
氟化物	325	494	413	505	547	479	10000
镍	37	43	38	28	27	32	900
总铬	51	50	55	51	58	56	10000
钼	0.3	0.2	0.5	0.5	0.3	0.3	_
钒	37.6	38.2	38.1	44.1	41.8	48.2	752

表 3-12 B1、B4 点位土壤监测结果 单位: mg/kg

检测点号	B1	B4	第二类用地筛选
土壤深度(m)	0-0.2	0-0.2	值
石油烃	352	164	4500
氟化物	325	313	10000
镍	42	30	900
总铬	82	64	10000
钼	0.2	0.1	_
钒	28.5	26.6	752
二噁英	2.4×10 ⁻⁶	1.4×10 ⁻⁶	4×10 ⁻⁵

根据上表可知,项目所在区域范围内建设用地土壤可以达到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)筛选值限值要求;农用地土壤可以达到《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)筛选值限值要求,项目所在地土

壤现状环境质量较好。

3.6 生态环境

本项目位于三门县海游街道上坑工业园区祥和路 58 号,不在产业园区外。有新增用地,但用地范围内不包含生态环境保护目标,可不开展生态环境现状调查。

1、大气环境

本项目需开展大气专项评价,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),项目评价范围为"以项目厂址为中心区域,自厂界外延 2.5km 的矩形区域"。项目厂界外 2500m 范围内不存在自然保护区、风景名胜区等保护目标,但存在居住区、学校等大气环境保护目标。具体情况见"大气专项评价"中"7.4 环境保护目标"。

2、声环境

本项目厂界周边 50m 范围内无声环境保护目标。

3、地下水环境

项目厂界外 500 m 范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源等地下水环境保护目标。

4、生态环境

本项目位于三门县海游街道上坑工业园区祥和路 58 号,不在产业园区外。有新增用地,用地范围内不包含生态环境保护目标。

1、大气污染物排放标准

废气污染物排放标准情况具体见"大气专项评价"中"7.2 评价因子及评价标准"。

2、废水排放标准

项目废水包括设备间接冷却水、初期雨水、淬火废水,均循环使用,不外排。

根据生态环境部部长信箱 2019 年 3 月 21 日关于"行业标准中生活污水执行问题"的回复,相关企业的厂区生活污水原则上应当按行业排放标准进行管控,若生活与生产废水完全隔绝,且采取了有效措施防止二者混排等风险,这类生活污水可按一般生活污水管理。

本项目生产废水经处理后全部回用,不外排放;项目排放的废水为职工生活污水,因此项目排水按一般生活污水管理。本项目废水预处理后纳管排放,纳管排放浓度执行《污水综合排放标准》(GB8978-1996)三级标准,其中氨氮、总磷排放执行《工业企业废水氨、磷污染物间接排放标准》(DB33/887-2013)标准。最终经三门县城市污水处理厂处理达《台州市城镇污水处理厂出水指标及标准限值表(试行)》准地表水IV类标准后外排。具体标准限值见下表 3-13。

污染物排放控制标准

	表3-1	3 废水排放	效标准	单位: mg/L ((pH除外))	
指标	pН	COD_{Cr}	BOD_5	NH ₃ -N	TP	SS	动植物油
纳管标准	6~9	≤500	≤300	≤35	≤8	≤400	≤100
环境排放标 准	6~9	≤30	≤6	≤1.5 (2.5) ^①	≤0.3	≤5	≤0.5

注: ①每年 12 月 1 日至次年 3 月 31 日执行括号内的排放限值。

3、噪声排放标准

(1) 施工期

建筑施工过程中场界噪声排放执行《建筑施工场界环境噪声排放标准》(GB12523-2011), 详见表 3-14。

表 3-14 《建筑施工场界环境噪声排放标准》(GB12523-2011)

昼间 dB(A)	夜间 dB(A)
70	55

注: 夜间噪声最大声级超过限值的幅度不得高于15dB(A)。

(2) 营运期

项目厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准限值,具体标准值见下表 3-15。

表 3-15 《工业企业厂界环境噪声排放标准》 (GB12348-2008) 单位: dB(A)

区域类别	昼间	夜间
3 类	65	55

4、固废储存、处置标准

危险废物按照《国家危险废物名录》(2025 年版)分类,危险废物贮存应符合《危险废物贮存污染控制标准》(GB18597-2023)、《危险废物收集贮存运输技术规范》(HJ2025-2012)和《危险废物识别标志设置技术规范》(HJ1276-2022)要求;根据《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),本项目采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,不适用该标准,但其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。工业固废按照《中华人民共和国固体废物污染环境防治法》(2020 年 4 月 29 日修订)和《环境保护图形标志固体废物贮存(处置)场》(GB15562.2-1995)及修改单的工业固体废物管理条款要求执行。

1、总量控制指标

为规范建设项目主要污染物排放总量指标审核及管理工作,严格控制新增污染物排放量。根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197 号),对化学需氧量、氨氮、二氧化硫、氮氧化物、烟粉尘、挥发性有机物、重点重金属污染物七种主要污染物实行排放总量控制。本项目纳入总量控制的污染物为 COD_{Cr}、NH₃-N、SO₂、NO_X和工业烟粉尘、铬及其化合物、镍及其化合物、VOCs。

根据"工程分析"内容,本项目总量指标情况见下表 3-16。

表 3-16 本项目总量控制指标 单位: t/a

种类	污染物名称	本项目新增排放量	总量控制建议值
废水	COD_{Cr}	0.168	0.168
及小	NH ₃ -N	0.008	0.008
	工业烟粉尘	17.403	17.579
	SO_2	2.248	2.248
応与	NOx	21.025	21.025
废气	铬及其化合物	0.033	0.033
	镍及其化合物	0.033	0.033
	VOCs	0.040	0.040

结合原有项目审批情况,改扩建前后企业主要污染物总量控制建议值见下表 3-17。

表 3-17 扩改建前后企业总量控制指标一览表 单位: t/a

农 5-17								
总量控制因子		原审批 排放量	本项目 排放量	以新带老 削减量	本项目实施 后企业总排 放量	排放增 减量		
水污染物	废水量	1530	5610	1530	5610	+4080		
	COD_{Cr}	0.15 (0.046) ^①	0.168	0.046	0.168	+0.122		
	氨氮	0.023 (0.002) ^①	0.008	0.002	0.008	+0.006		
大气 污染 物	工业烟粉 尘	2.615 [®]	17.579	2.615	17.579	+14.964		
	SO_2	$0.79^{ ilde{ id}}}}}}}}}}}}}}} } } } } } } } } } $	2.248	0.79	2.248	+1.458		
	NOx	7.39 [©]	21.025	7.39	21.025	+13.635		
	铬及其化 合物	0	0.033	0	0.033	+0.033		
	镍及其化 合物	0	0.033	0	0.033	+0.033		
	VOCs	0	0.040	0	0.040	+0.040		

注:①环评审批时企业废水处理达《污水综合排放标准》(GB8978-1996)中一级标准后外排,现状企业生活污水经预处理后纳管,最终经三门县城市污水处理厂处理达《台州市城镇污水处理厂出水指标及标准限值表(试行)》准地表水IV类标准后外排,()内废水污染物已根据现执行标准重新核算。②()内废气污染物排放量已根据 2015 年验收情况重新核算。

2、削减替代比例

(1) SO₂, NOx, VOCs

三门县上一年度为环境空气质量达标区,SO₂、NOx、VOCs 削减比例按 1:1 执行。

(2) COD_{Cr}、氨氮

项目仅排放生活污水,根据国家及浙江省相关文件,并结合当地环境管理要求,项目产生的 COD_{Cr} 和 NH_{3} -N 新增排放总量无需区域替代削减。

(3) 铬及其化合物、镍及其化合物

根据《浙江省生态环境厅关于印发浙江省重金属污染防控工作方案的通知》(浙环发 [2022]14号)和《台州市生态环境局关于印发台州市重金属污染防控工作方案的通知》(台 环发[2022]32号)等文件,本项目不属于其中所列的重点行业,重金属不进行区域总量替代 削减。

综上, COD_{Cr} 、 NH_3 -N、铬及其化合物、镍及其化合物无需区域替代削减, SO_2 、NOx、VOCs 按 1:1 进行区域替代削减,具体见下表 3-18。

表 3-18 本项目主要污染物总量控制平衡方案 单位: t/a

种类	污染物名称 (申请指标)	总量控制建议 值(本项目新增 排放量)	替代 比例	申请量(交易量、替代量)	备注	
废水	COD_{Cr}	0.122	/	/	/	
	NH ₃ -N	0.006	/	/		
废气	工业烟粉尘	14.964	/	/	备案指标	
	SO_2	1.458	1:1	1.458	排污权交易指标	
	NOx	13.635	1:1	13.635	排污权交易指标	
	VOCs	0.04	1:1	0.04	区域替代削减	
	铬及其化合物	0.033	/	/	/	
	镍及其化合物	0.033	/	/	/	

四、主要环境影响和保护措施

项目施工期环保措施见下表 4-1。 表 4-1 施工期环境保护措施汇总 排放源或 内容 污染因子 防治对策 预期治理效果 工序 (1) 洒水抑尘,每天洒水 4~5 次,同时进出 车辆限速行驶并保持路面清洁; (2)施工道路工地出入口路面硬化,并安装 运输车辆清洗设备及泥浆沉淀设施; (3)加强现场管理,文明施工,工地周围设 施工扬尘(含 置围挡,并采用商品混凝土; (4) 避免在大风干燥天气条件下施工; 车辆行驶扬 经处理后能满 颗粒物 无 尘及堆场扬 (5) 禁止现场进行有严重粉尘污染的作业; 足相应标准, 废气 尘) (6)运渣土车辆必须做到净车出厂,运输车对周围环境影 织 辆不宜过满,同时采取相应的遮盖、封闭措 响较小。 施; (7) 开挖土方集中堆放,及时清运: (8) 场内土堆、堆料加遮盖或喷洒覆盖剂, 施工 通知禁止在大风天进行搅拌工作。 期环 运输车辆尾 氮氧化 境保 气 物、烟尘 护措 化学需氧量、 生活污水 经现有化粪池处理后纳管排放。 氨氮 施 (1)施工机械在清洗前先人工对设备清除油 经处理后能满 污, 该废水经隔油池处理后进行综合消化; 足相应标准, 废水 (2) 泥浆废水经沉淀池处理后, 上清液用于 悬浮物、石油 对周围水环境 洒水抑尘或水泥搅拌, 沉淀物用于回填; 施工废水 (3)养护废水通过施工用地周界的排水明沟基本无影响。 类 收集,经沉淀池处理后,上清液用于洒水抑 尘或水泥搅拌,沉淀物用于回填。 员工生活 生活垃圾 定点收集后由当地环卫部门统一清运 均可以得到妥 善处理,对周 固废 (1) 不可利用的弃渣运至指定地点倾倒; 围环境基本无 建筑废料 建筑废料 (2) 弃方均运至合法消纳场。 影响。 (1) 合理安排施工计划及施工时间: (2) 尽量采用低噪声机械,定期检查设备,加强设备维 护,使设备处于良好的运行状态,避免和减轻非正常运行 施工噪声及 产生的噪声污染; 对周围环境影 噪声 运输车辆噪 (3) 合理安排施工物料的运输时间; 响较小。 声 (4) 施工单位在施工现场张贴通告和投诉电话,以便及 时处理各种环境纠纷; (5) 合理确定工程施工场界,设置临时隔声围护。 1、生态影响避让措施 (1) 施工前对相关施工人员广泛宣传野生动植物保护的法律法规与政策,增强 生态 他们对野生动植物的保护意识。在本项目施工周边区域增加宣传牌,强调对评价区内 |野生动植物保护的重要性宣传。加强对施工人员的管理,通过制度化严禁施工人员上

山猎捕蛙类、蛇类、兽类、鸟类(包括鸟蛋)等野生动物和从事其它有碍生态保护的 活动,保护野生动物及生境。

- (2)在施工过程中,为避免施工对野生动物的影响,要对相关人员加强教育, 不主动伤害野生动物,消除其对人类的恐惧。如遇野生动物,应放生。如在施工范围 内发现鸟蛋及冬眠的蛙类和蛇类,可移至附近不受工程干扰的区域。
- (3)保护动植物的保护措施:施工期间,对施工人员和管理人员普及、讲解生态环境保护相关知识,增强生态环境保护意识,以公告、宣传册等形式,对施工人员普及评价范围内保护动植物的相关知识。加强野生动物救护知识培训。
- (4)生态敏感区的保护措施:用明显标志标明工程施工活动范围,并进行严格管理,施工人员不可随意扩大施工活动区域,不得占用生态保护红线。
 - (5) 合理安排施工时段,避开保护鸟类迁徙期。
- (6)施工期施工场地应设置沉淀池、隔油池,废水经处理后回用,不得直接排 入保护区水域。

2、生态影响减缓措施

- (1) 开工前对施工临时设施要进行细致的规划,减少对地表植被的破坏。按照 设计文件确定征占土地范围,进行地表植被的清理。
- (2)严格执行施工规划,不得随意扩大作业面。在施工场地设挡墙或隔板,施工人员在施工过程中应限制在作业面内施工活动,不得随意扩大作业面,不得越界施工滥采滥伐,以减少施工占地对植被的影响。
- (3)对于本工程施工建设区及其施工影响区域,可能会出现野生保护植物,须 经施工环境监理或者施工期陆生生态调查确定后,必须采取物种移栽措施进行保护; 严禁施工单位在不采取保护措施的条件下破坏其生长环境和状态。
- (4)施工过程中应尽量减少高噪声施工。在工程初设阶级应进一步优化施工组织设计,减少对于周边动物的扰动;同时做好施工车辆及各施工机械的保养和维护,限制车速、设立标志牌以减轻对周边活动的动物的影响。
- (5)在施工结束施工人员撤离时,应及时拆除临时设施,清除碎石、砖块、施工废物等影响植物生存和影响区域景观美学的施工杂物,恢复景观斑块的连通性,以利于植物生长。此外,应对临时施工区进行绿化,尽可能恢复已被破坏的植被,绿化树种应选择当地种类,若选择外地种需慎重,要进行充分的论证,以免造成新的外来物种生态入侵。

3、生态影响恢复措施

本项目陆生生态恢复措施主要为对永久占地的植物保护和恢复措施。

(1) 厂界沟渠处

沟渠工程边坡原状土覆盖层表土剥离,施工结束后用于土地复垦。沟渠外侧边坡

铺植草皮,坡底栽植一排乡土树种,并根据绿化需要进行表土回覆和土地整治。

(2) 建筑物工程及管理区

该部分区域为永久占地范围,地面进行硬化处理,地表的表土和植被需要由当地 政府统一协调弃土场。对取土区进行表土剥离,并临时堆放在侧边,采用滚动堆放的 办法。取土完毕后将剩余土方回填至取土坑,土地平整。

(3) 南地块厂界护坡

对南地块厂界围墙处进行边坡治理,结合当地政府正在实施的治理工程,对南地 块厂界已发生滑坡等风险的区域采用挡土墙、坡面硬化、设置排水沟等方式,减缓对 生态的影响。

- 4、对生态敏感区的保护措施
- (1) 加强项目建设全过程的监督检查

建议成立专门的安全环保机构,加强对本建设项目全过程的监督检查,督促施工单位严格落实各项目环保措施和水土保持措施,防止建设活动不当对生态保护红线造成不利影响和破坏。

- (2) 施工期保护措施
- ①加强宣传、施工管理与监理

施工期间,以公告、宣传单、板报和会议等形式,加强对施工人员的环境保护宣传教育和保护野生动物常识的宣传,提高施工人员的生态环境保护意识。

- ②减少对动物生境的破坏。尽量减少对临时占地处的土壤和植被的破坏,进而减少对动物栖息地的破坏。
- ③设置警示牌。施工期间施工作业区临近水域的位置设置生态保护警示牌。警示牌上标明工程施工区范围,禁止越界施工占地或捕猎野生动物,减少占地造成的动物栖息地和对野生动物的伤害。
- ④工程完工后尽快做好生态环境的恢复工作,以减少生境破坏对动物的不利影响。

严格控制施工界线,禁止随意扩大占压、扰动面积及破坏风景名胜区的植被等。 施工期间做好隔离、遮挡等保护措施,避免影响景区的景观,防治施工人员、施工机械对生态保护红线内的自然资源和独特的植被损坏。采用先进的施工工艺和机械设备,降低噪声、固体废弃物等对环境的污染,以减轻可能造成的影响。不在生态保护红线内设置施工营地和取弃土场。开展文明施工、安全施工和环保施工,制定环境保护的管理制度和有效措施,加强施工人员的管理和环境保护意识,以缓解和减轻施工对环境的影响。

一、废气

具体内容详见大气专项评价专篇。本项目排放废气污染物涉及二噁英,根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》,二噁英属于有毒有害污染物,同时项目厂界 500m 范围内有环境空气保护目标,需进行大气专项评价,内容根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求编制。

大气专项评价结论:

根据工程分析,项目产生的废气主要为熔炼废气、精炼废气、浇铸废气、天然气燃烧废气、淬火废气和食堂油烟废气。在采取本评价提出的废气收集及处理措施后,各工段废气排放速率及排放浓度均符合《炼钢工业大气污染物排放标准》(GB28664-2012)、《大气污染物综合排放标准》(GB16297-1996)、《铁合金工业污染物排放标准》(GB28666-2012)、《工业炉窑大气污染物排放标准(GB9078-1996)》、《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269号)、《工业炉窑大气污染综合治理方案》的通知(环大气[2019]56号)等相应标准。

项目所在区域属于达标区,根据预测结果,本项目新增污染源正常排放下污染物短期浓度贡献值的最大浓度占标率 $\leq 100\%$; 新增污染源正常排放下污染物年均浓度贡献值的最大浓度占标率 $\leq 30\%$ 。叠加环境质量现状浓度及在建、拟建项目的环境影响后二噁英、氟化物、铬及其化合物、镍及其化合物、非甲烷总烃短期浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、TSP、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的保证率日平均质量浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的保证率日平均质量浓度符合环境质量标准。项目无需设置大气环境防护距离。

环评认为项目建成后造成的大气环境影响可以接受。

二、废水

1、废水污染源强分析

(1) 设备间接冷却水

项目中频炉、精炼炉、水压机、油压机等设备在工作时需要用间接水冷的方式进行冷却,项目拟配备 12 台冷却塔,合计循环水量约 2810t/h,项目冷却水进入冷却塔冷却后流入循环水池,再通过水泵加压至车间循环使用,不外排。熔炼车间冷却塔(1650t/h)工作时间以3600h/a 计,其余车间冷却塔(1160t/h)工作时间以4800h/a 计。由于受热蒸发损耗等作用,循环水会有一定量的损耗,需定期补充,补水量以循环水量的0.3%计,则年补充水量为34524t/a。

(2) 冷却池用水

项目锻造车间外设有一个室外冷却池,总容积约 1000 m³。日常使用容积约 500m³,用 于冷却循环水,冷却池内的水对水质要求不高,循环使用,不外排。使用过程中损耗部分定 期补充, 日损耗量按用水量的 3%计, 补充量约为 4500t/a。

(3) 淬火废水

项目水淬池有效容积约 200m³,淬火废水使用一段时间后需定期捞渣,循环使用,不外排。使用过程中损耗部分定期补充,日损耗量按用水量的 5%计,补充量约为 3000t/a。

(4) 初期雨水

三门县年平均降水量 1733.1mm,初期雨水为降雨之后前 15 分钟的收集量。本项目初期雨水按降雨量的 10%计,南地块初期雨水汇水面积约占地面积 45037m²-屋顶面积 32777.8m²=16716.2m²(1.672hm²)。因此初期雨水量为 16716.2×1.733×0.1=2897t/a(最大 29t/d,按 100 天计)。初期雨水污染物主要为 COD_{Cr}、SS 及极少量铬、镍等重金属,本项目初期雨水收集至初期雨水池后再经沉淀处理,然后泵送至事故应急池,作为室外冷却池的补充用水,不外排。

参照《化工建设项目环境保护工程设计标准》(GB/T 50483-2019),初期污染雨水按降雨初期 20mm 厚度的雨量计算。

$$W_i = 10 \times \delta \times F$$

式中: Wi—初期径流弃流量,单位为立方米 (m3);

δ—初期径流厚度,单位为毫米 (mm);

F—汇水面积,单位为公顷(hm2)。

为确保项目厂区地面可能残留的污染物能充分被降雨带走,杜绝后期洁净雨水污染环境,初期径流厚度取 20mm,本项目汇水面积约 1.672m²。经计算得:本项目需建设一座容积不小于 334.4m³ 的初期雨水收集池。

(5) 生活污水

本项目劳动定员 220 人,厂区内设倒班宿舍与食堂,员工用水量按 100L/人·d 计,年工作 300 天,则项目实施后企业用水量为 6600t/a,产污系数取 0.85,废水产生量为 5610t/a。 废水水质类比一般生活污水, COD_{Cr} 产生浓度取 350mg/L,氨氮产生浓度取 35mg/L, BOD_5 产生浓度取 200mg/L,动植物油产生浓度取 20mg/L,则本项目生活污水中污染物产生量分别为 COD_{Cr} 1.964t/a,氨氮 0.196t/a, BOD_5 1.122t/a,动植物油 0.112 t/a。

(6) 项目废水产、排情况汇总

本项目设备间接冷却水循环使用,不外排;本项目初期雨水收集至初期雨水池后再经沉淀处理,然后泵送至事故应急池,作为室外冷却池的补充用水,不外排;淬火池废水定期捞渣,循环使用,不外排;生活污水经化粪池/隔油池预处理后纳管。项目废水纳管执行《污水综合排放标准》(GB8978-1996)中的三级标准(其中总磷、氨氮执行《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)中的间接排放限值)。废水最终经三门县城市污水处理厂处理达《台州市城镇污水处理厂出水指标及标准限值表(试行)》准地表水IV类标

准后外排。废水产生、排放情况汇总详见表 4-2。

表4-2 项目废水污染物源强汇总表

					111 \		
		<u> </u>	七量		排方	文量	
废水	名称) =	L.里	纳	管	环	境
		mg/L	t/a	mg/L	t/a	mg/L	t/a
	废水量	/	5610	/	5610	/	5610
	COD_{Cr}	350	1.964	350	1.964	30	0.168
生活污水	氨氮	35	0.196	35	0.196	1.5	0.008
	BOD_5	200	1.122	200	1.122	6	0.034
	动植物油	20	0.112	20	0.112	0.5	0.003

2、废水治理设施

项目食堂废水经隔油池处理后与生活污水一并经化粪池处理,排入市政污水管网,最终进入三门县城市污水处理厂。

生活污水采用化粪池处理,食堂废水采用隔油池+化粪池处理,均是常规成熟稳定的工艺,因此项目生活污水、食堂废水采用上述处理工艺,在技术上是完全可行,可以做到稳定运行及达标排放。

表4-3 项目废水防治设施相关参数一览表

				汀	染治理设施			排放口	排放
废水 类别	汚染物种 类	排放去向	排放规 律	污染治理 设施编号	污染治理 设施名称	污染治 理设施 工艺	排放口 编号	设置是 否符合 要求	日 类型
生活污水	COD _{Cr} 、氨 氮、BOD ₅ 、 动植物油	进入城市 污水处理 厂	间歇排 放,流量 不稳定	TW001	生活污水 处理设施	隔油池 +化粪 池	DW001	是	企业总 排口

表 4-4 废水间接排放口基本情况表

		排放口均	也理坐标				受	纳污水处理厂	一信息
序号	排放口 编号	经度	纬度	废水排放 量/(万 t/a)	排放去 向	间歇排 放时段	名称	污染物种 类	国家或地 方污染物 排放标准 浓度限值 ^①
							三门	pН	6-9
		121020/	20051		进入城	生产期	县城	COD_{Cr}	30
1	DW001	121°20′ 27.651″	29°5′ 27.75″	0.561	市污水		市污	氨氮	1.5 (2.5)
		27.031	21.73		处理厂	间	水处	BOD_5	6
							理厂	动植物油	0.5

3、依托污水处理厂概况

①依托污水处理厂概况

三门县城市污水处理厂位于三门县海游街道园里村园里塘,规划总处理规模 8 万 m^3/d ,一次规划、分期实施,设计一期工程(2 万 m^3/d)、二期工程(2 万 m^3/d)、三期工程(4 万 m^3/d),主要服务范围为三门县城区、三门县工业园区和三门县城西区等区域。

一期工程处理规模为 2 万 t/d,采用改良式 SBR 工艺,于 2013 年 5 月通过竣工环保验收。 二期工程采用 BOT 方式运作,处理规模为 2 万 t/d。污水处理工艺采用改良式 SBR 工艺,于 2015 年 4 月完成竣工验收。一期、二期提标工程项目日处理规模为 4 万吨的污水深度处理, 采用反硝化深床滤池作为深度处理工艺,对污水处理厂一、二期出水水质进行提标,进水为一、二期处理尾水,通过反硝化滤池处理,出水水质排放标准由《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 B 提升至一级 A 标准。三门县城市污水处理厂一级 A 提标项目于 2016 年 8 月具备通水条件,2016 年 9 月开始试运行,2016 年 11 月完成提标工程单位工程质量竣工验收。

三门县城市污水处理厂三期工程选址于三门县海游港以南、园里溪以东的园里村园里塘(一期、二期工程的南面),目前已完成竣工验收,设计规模 4.0 万 m³/d,采用氧化沟式 A/A/O+沉淀池+ABFT 池+连续流沙滤池处理工艺。工程污水处理工艺流程为: 进水—细格栅及沉砂池—初沉池—MSBR 改造(一期、二期改良式 SBR 池)——期中间提升泵、絮凝反应池—反硝化滤池(增加一格)—紫外线消毒池—出水。详见下图 4-1。

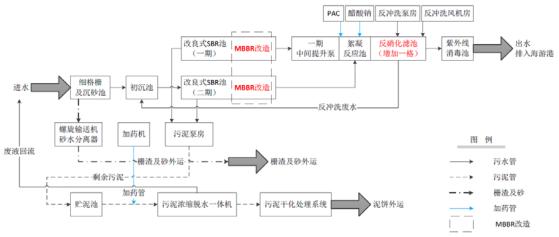


图 4-1 污水处理站工艺流程

根据浙江省污染源自动监控信息管理平台查询数据,三门县城市污水处理厂近期现状运行水质情况见下表 4-5。

表 4-5 三门县城市污水处理厂出水水质情况统计表

时间	执行标准	监测项目	实测浓度	标准限值	是否达标
	基本控制项目最	pH 值	6.78	6-9	是
	高允许排放浓度	化学需氧量	9.69	30	是
2025.4.21	(日均值) 2006	氨氮	0.3558	1.5	是
	年 1月 1日起建	总氮	4.707	12	是
	设的水温>12度	总磷	0.0868	0.30	是
	基本控制项目最	pH 值	6.72	6-9	是
	高允许排放浓度	化学需氧量	9.63	30	是
2025.4.22	(日均值) 2006	氨氮	0.4722	1.5	是
	年 1月 1日起建	总氮	5.112	12	是
	设的水温>12度	总磷	0.0852	0.30	是
	基本控制项目最	pH 值	6.73	6-9	是
	高允许排放浓度	化学需氧量	8.75	30	是
2025.4.23	(日均值)2006	氨氮	0.304	1.5	是
	年 1月 1日起建	总氮	4.042	12	是
	设的水温>12度	总磷	0.0772	0.30	是

	基本控制项目最	pH 值	6.77	6-9	是
	高允许排放浓度	化学需氧量	7.61	30	是
2025.4.24	(日均值) 2006	氨氮	0.16	1.5	是
	年 1月 1日起建	总氮	2.576	12	是
	设的水温>12度	总磷	0.071	0.30	是
	基本控制项目最	pH 值	6.73	6-9	是
	高允许排放浓度	化学需氧量	7.31	30	是
2025.4.25	(日均值)2006	氨氮	0.2439	1.5	是
	年 1月 1日起建	总氮	2.981	12	是
	设的水温>12度	总磷	0.0815	0.30	是

三门县城市污水处理厂出水各主要指标均能达到《台州市城镇污水处理厂出水指标及标准限值表(试行)》准地表水IV类标准限值要求,且污水厂废水瞬时最大流量为480.13L/s,日排水量为4.15万吨,处理能力余3.85万吨,污水处理厂尚有余量。

②依托可行性分析

本项目实施后外排量 5610t/a,污水处理厂余量能满足项目废水处理需求。项目废水污染物主要为 COD、氨氮等,排放浓度在纳管标准以内,因此不会对污水处理厂造成冲击。因此项目废水排放满足污水处理厂接收废水的条件,对最终纳污水体影响不大。

三、噪声

本项目移动声源主要为运输车辆和叉车。本项目厂区道路较窄,运输车辆在厂区内为低速行驶,噪声级一般在 60dB(A); 叉车主要在车间内行驶,项目车间面积有限,叉车主要为短线多趟次的来回,噪声级一般在 55dB(A)。运输车辆和叉车产生的噪声为间歇性,仅在物料入库和出库时间段内产生,因此只要企业加强车辆管理,禁鸣喇叭,运输车辆和叉车对周围声环境影响较小。因此,本次预测主要考虑项目固定声源对周边环境的影响。

1) 预测模式

根据《环境影响评价技术导则声环境(HJ2.4-2021)》中规定,本项目选用导则 A 中附录 A、B 中给定的噪声预测模式,在不能取得声源倍频带声功率级或倍频带声压级,只能获得某点的 A 声功率级或某点的 A 声级时,可用某点的 A 声功率级或某点的 A 声级计算。

- (1) 预测条件假设
- ①所用产噪声设备均在正常工况下运行;
- ②考虑室内声源所在厂房围护结构的隔声、吸声作用;
- ③衰减仅考虑几何发散衰减, 屏障衰减。
- (2)室内声源

如图 4-2 所示,声源位于室内,室内声源可采用等效室外声源声功率级法进行计算。设靠近开口处(或窗户)室内、室外某倍频带的声压级分别为 L_{p1} 和 L_{p2} 。若声源所在室内声场为近似扩散声场,则室外的倍频带声压级可按式(B.1)近似求出:

$$L_{p2}=L_{p1}-(TL+6)$$
 (B.1)

式中:

TL: 靠近开口处(或窗户)室内某倍频带的声压级或 A 声级, dB;

 L_{n2} : 靠近开口处(或窗户)室外某倍频带的声压级或 A 声级, dB;

TL:隔墙(或窗户)倍频带或A声级的隔声量,dB。

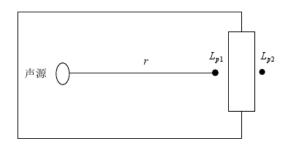


图 4-2 室内声源等效为室外声源图例

也可按式(B.2)计算某一室内声源靠近围护结构处产生的倍频带声压级:

$$L_{p1} = L_{w} + 10 \lg \left(\frac{Q}{4\pi r^{2}} + \frac{4}{R} \right)$$
 (B.2)

式中:

 L_{nl} : 靠近开口处(或窗户)室内某倍频带的声压级或 A 声级,dB;

Lw: 点声源声功率级(A计权或倍频带),dB;

Q: 指向性因数,通常对无指向性声源,当声源放在房间中心时,Q=1,当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4,当放在三面墙夹角处时,Q=8;

R: 房间常数, $\mathbf{R} = \mathbf{S}\alpha/(1-\alpha)$, S 为房间内表面面积, \mathbf{m}^2 , α 为平均吸声系数;

r: 声源到靠近围护结构某点处的距离, m。

然后按式(B.3)计算出所有室内声源在围护结构处产生的 i 倍频带叠加声压级:

$$L_{pli}(T) = 10 \lg \left(\sum_{j=1}^{N} 10^{0.1 L_{plij}} \right)$$
 (B.3)

式中:

 $L_{nli}(T)$: 靠近围护结构处室内 N 个声源 i 倍频带的叠加声压级,dB;

Lniii: 室内 j 声源 i 倍频带的声压级, dB;

N: 室内声源总数。

在室内近似为扩散声场时,按式(B.4)计算出靠近室外围护结构处的声压级:

$$L_{p2} = L_{p1} - (TL + 6)$$
 (B.4)

式中:

 $L_{p2i}(T)$: 靠近围护结构处室外 N 个声源主倍频带的叠加声压级,dB;

TL: 围护结构主倍频带的隔声量, dB。

然后按式(B.5)将室外声源的声压级和透过面积换算成等效的室外声源,计算出中心位置位于透声面积(S)处的等效声源的倍频带声功率级。

$$L_w = L_{p2}(T) + 10 \lg S$$
 (B.5)

然后按室外声源预测方法计算预测点处的 A 声级。

(3) 室外声源

①基本公示

户外声传播衰减包括几何发散(A_{div})、大气吸收(A_{atm})、地面效应(A_{gr})、障碍物屏蔽(A_{har})、其他多方面效应(A_{misc})引起的衰减。

在环境影响评价中,应根据声源声功率级或参考位置处的声压级、户外声传播衰减,计 算预测点的声级,

$$Lp_{(r)} = Lp_{(r0)} + DC - (A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc})$$

式中:

Lp(n): 预测点处声压级, dB;

 $Lp_{(r0)}$: 参考位置 r_0 处的声压级,dB;

DC: 指向性校正,它描述点声源的等效连续声压级与产生声功率级 Lw 的全向点声源在规定方向的声级的偏差程度,dB;

A_{div}: 几何发散引起的衰减, dB;

A_{atm}: 大气吸收引起的衰减, dB;

A_{or}: 地面效应引起的衰减, dB;

Abar: 障碍物屏蔽引起的衰减, dB;

Amisc: 其他多方面效应引起的衰减, dB。

②点声源的几何发散衰减

无指向性点声源几何发散衰减的基本公式是:

$$L_p(r) = L_p(r_0) - 20\lg(r/r_0)$$

式中:

Lp (r): 预测点处声压级, dB;

Lp (r_0) : 参考位置 r_0 处的声压级,dB;

r: 预测点距声源的距离;

 r_0 : 参考位置距声源的距离。

(4) 工业企业噪声计算

设第 i 个室外声源在预测点产生的 A 声级为 L_{Ai} , 在 T 时间内该声源工作时间为 t_{ij} 第

j 个等效室外声源在预测点产生的 A 声级为 L_{Aj} ,在 T 时间内该声源工作时间为 t_i ,则拟建工程声源对预测点产生的贡献值(L_{eqg})为:

$$L_{\text{eqg}} = 10 \lg \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1 L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right) \right]$$

式中:

Leag: 建设项目声源在预测点产生的噪声贡献值,dB;

 t_i : 在T时间内j声源工作时间, s;

 t_{i} : 在T时间内 i 声源工作时间, s;

T: 用于计算等效声级的时间, s;

N: 室外声源个数;

M——等效室外声源个数。

(5) 预测值计算

$$L_{\rm eq} = 101 g \left(10^{0.1 L_{\rm eqg}} + 10^{0.1 L_{\rm eqb}} \right)$$

式中:

Leg: 预测点的噪声预测值, dB;

Leag: 建设项目声源在预测点产生的噪声贡献值,dB(A);

Leab: 预测点的背景噪声值,dB(A)。

2) 预测参数

项目预测参数见下表 4-6、表 4-7。

表 4-6 工业企业噪声源调查清单(室外声源)

				1	X 4-0 .	<u> </u>	工厂/木/	一体则且何平(主)广	- WK /		
	序	厂区	声源名称	型号	空间	相对位	置	声压级/距声源距	降噪措施	采取措施后排 放的总声压级	运行时段
	号) 🗠	产你石你	至与	X	Y	Z	离 (dB (A)/m)	件除1日旭	成的忠产压级 dB(A)	色们的权
	1		DA001 风机	点源	151	71	1	92/1		72/1	11:00~13:00、
	2		DA002 风机	点源	135	6	1	95/1	基础减振、	75/1	22:00~次日 8:00
运	3		DA003 风机	点源	37	165	1	85/1	差 面 域 派 、 消 声	65/1	
营	4		DA004 风机	点源	75	133	1	80/1	1H)—	60/1	8:00- 22:00
期	5		DA005 风机	点源	97	100	1	78/1		58/1	
环	6		冷却塔1	点源	63	40	1	85/1		80/1	
境	7		冷却塔 2	点源	104	36	1	85/1		80/1	
影	8		冷却塔3	点源	120	35	1	85/1		80/1	11:00~13:00、
响	9		冷却塔 4	点源	63	39	1	85/1		80/1	22:00~次日 8:00
和保	10		冷却塔 5	点源	92	35	1	85/1		80/1	
护	11		冷却塔 6	点源	82	37	1	85/1		80/1	
措	12	南地	冷却塔7	点源	-76	196	1	85/1		80/1	
施施	13	块	冷却塔 8	点源	-76	186	1	85/1		80/1	
)JE	14	57	冷却塔 9	点源	-76	172	1	85/1		80/1	8:00- 22:00
	15		冷却塔 10	点源	12	127	1	85/1	基础减振	80/1	
	16		冷却塔 11	点源	23	108	1	80/1	至11119人17人	75/1	
	17		水泵 1	点源	62	38	0.1	75/1		70/1	
	18		水泵 2	点源	107	35	0.1	75/1		70/1	
	19		水泵 3	点源	119	32	0.1	75/1		70/1	11:00~13:00、
	20		水泵 4	点源	58	42	0.1	75/1		70/1	22:00~次日 8:00
	21		水泵 5	点源	92	34	0.1	75/1		70/1	
	22		水泵 6	点源	85	35	0.1	75/1		70/1	
	23		水泵 7	点源	-76	192	0.1	75/1		70/1	
	24		水泵 8	点源	-77	191	0.1	75/1		70/1	8:00- 22:00
	25		水泵 9	点源	-76	169	0.1	75/1		70/1	

26		水泵 10	点源	16	126	0.1	75/1		70/1	
27		水泵 11	点源	25	106	0.1	75/1		70/1	
28	北地	DA006 风机	点源	-9	470	1	78/1	基础减振、 消声	58/1	8:00- 22:00
29	块	冷却塔 12	点源	0	430	1	85/1	基础减振	80/1	8:00- 22:00
30		水泵 12	点源	1	429	0.1	75/1	至14400000000000000000000000000000000000	70/1	

表 4-7 工业企业噪声源调查清单(室内声源)

				声源源 强		空间	相对位	置/m	距室	室内边		建筑物	建筑物	外噪声
序号	建筑物名称	声源名称	型号	声功率 级/dB (A)	声源控制 措施	X	Y	Z	内边 界距 离/m ^①	界声级 /dB (A)	运行时段	插入损 失/ dB (A)	声压 级/dB (A)	建筑 物外 距离 /m
1		中频炉 1	25t	82	基础减振	110	58	1.5	41.43	59.47		21	38.47	1
2	南地块	精炼炉1	25t	82	基础减振	85	65	1.5	41.43	59.47		21	38.47	1
3	熔炼车间1	真空精炼炉1	25t	82	基础减振	64	69	1.5	41.43	59.47		21	38.47	1
4	/ / / / / / / / / / / / / / / / / / /	螺杆空压机 1	BLT30A	90	基础减振	89	56	0.5	41.43	67.47	11:00~	21	46.47	1
5		螺杆空压机 2	BLT30A	90	基础减振	95	56	0.5	41.43	67.47	13:00	21	46.47	1
6		中频炉 2	30t	82	基础减振	107	8	1.5	33.33	59.47	22:00~	21	38.47	1
7		中频炉 3	30t	82	基础减振	95	11	1.5	33.33	59.47	次日 8:00	21	38.47	1
8	南地块	精炼炉 2	60t	82	基础减振	75	14	1.5	33.33	59.47	ΙΧД 6.00	21	38.47	1
9	熔炼车间 2	真空精炼炉 2	100t	82	基础减振	59	15	1.5	33.33	59.47		21	38.47	1
10		螺杆空压机 3	BLT30A	90	基础减振	95	8	0.5	33.33	67.47		21	46.47	1
11		螺杆空压机 4	BLT30A	90	基础减振	99	8	0.5	33.33	67.47		21	46.47	1
12		水压机1	7000t	93	基础减振	7	178	1	46.47	65.23		21	44.23	1
13		水压机2	3150t	93	基础减振	-16	175	1	46.47	65.23		21	44.23	1
14	南地块	操作机1	20t	80	/	5	169	1	46.47	52.23	8:00- 22:00	21	31.23	1
15	锻造车间1	操作机2	40t/	80	/	-13	166	1	46.47	52.23	6:00- 22:00	21	31.23	1
16		电加热炉等效声源1	/	86	基础减振	-2	215	1	46.47	63.23		21	42.23	1
17		锻造车间淬火池	/	75	/	-17	177	0	46.47	52.23		21	31.23	1

18		淬火池水泵	/	75	基础减振	-32	180	0.1	46.47	47.23	21	26.23	1
19		液压金属剪断机	/	80	基础减振	-59	189	1	46.47	52.23	21	31.23	1
20		天然气加热炉等效声源1	/	80.4	基础减振	-35	226	1	46.47	52.23	21	31.23	1
21		锯床等效声源 1	/	95.8	基础减振	-38	177	1	46.47	73.03	21	52.03	1
22		车床 1	/	82	基础减振	-50	165	1	46.47	54.23	21	33.23	1
23		车床 2	/	82	基础减振	-42	165	1	46.47	54.23	21	33.23	1
24		铣床等效声源	/	94.5	基础减振	-50	225	1	46.47	71.73	21	50.73	1
25		机械手1	/	78	/	-18	232	1	46.47	50.23	21	29.23	1
26		机械手 2	/	78	/	-18	224	1	46.47	50.23	21	29.23	1
27		机械手3	/	78	/	-18	203	1	46.47	50.23	21	29.23	1
28		取料机1	20t	78	/	6	227	1	46.47	50.23	21	29.23	1
29		取料机 2	20t	78	/	7	199	1	46.47	50.23	21	29.23	1
30		螺杆空压机 5	BLT30A	90	基础减振	19	178	0.5	46.47	62.23	21	41.23	1
31		离心分离机		82	基础减振	-40	160	1	46.47	54.23	21	33.23	1
32		水压机3	2500t	93	基础减振	18	141	1	25.51	72.24	21	51.24	1
33		水压机4	10000t	93	基础减振	38	142	1	25.51	72.24	21	51.24	1
34		操作机3	100t	80	/	42	134	1	25.51	59.24	21	38.24	1
35	南地块	操作机4	100t	80	/	23	137	1	25.51	59.24	21	38.24	1
36	锻造车间2	天然气加热炉等效声源2	/	77	基础减振	28	145	1	25.51	61.24	21	40.24	1
37		电加热炉等效声源2	/	76	基础减振	8	144	1	25.51	60.24	21	39.24	1
38		螺杆空压机6	BLT30A	90	基础减振	62	135	0.5	25.51	69.24	21	48.24	1
39		取料机3	20t	78	/	62	137	1	25.51	57.24	21	36.24	1
40		电液锤1	5t	93	基础减振	40	111	1	23.3	72.24	21	51.24	1
41		电液锤2	3t	90	基础减振	55	107	1	23.3	69.24	21	48.24	1
42		电液锤3	2t	90	基础减振	69	104	1	23.3	69.24	21	48.24	1
43	南地块	操作机5	10t	80	/	43	116	1	23.3	59.24	21	38.24	1
44	锻造车间3	操作机 6	10t	80	/	56	114	1	23.3	59.24	21	38.24	1
45		操作机7	10t	80	/	69	110	1	23.3	59.24	21	38.24	1
46		天然气加热炉等效声源3	/	77	/	60	106	1	23.3	56.24	21	35.24	1
47		取料机 4	5t	78	/	82	100	1	23.3	62.24	21	41.24	1

48		取料机 5	5t	78	/	81	110	1	23.3	62.24	21	41.24	1
49		油压机	1600t	92	基础减振	-13	449	1	18.74	73.91	21	52.91	1
50	دا ط ما دا الـ	操作机8	20t	80	/	-19	440	1	18.74	66.91	21	45.91	1
51	北地块 油压车间	天然气加热炉等效声源4	/	77	/	-9	459	1	18.74	63.91	21	42.91	1
52	油压 手间	取料机6	10t	78	/	-3	442	1	18.74	64.91	21	43.91	1
53		螺杆空压机 7	BLT30A	90	基础减振	-12	434	1	18.74	71.91	21	50.91	1
54	北地块 锯床车间	锯床等效声源 2	/	96	基础减振	-55	391	1	36.02	76.26	21	55.26	1

表 4-8 等效点声源计算

岸			₩. 旦.	##************		批战亡士马克	你为口士马安
序	建筑物	设备	数量	措施前声功	降噪措施	措施后声功率	等效后声功率
号	E PE IO	久田	(台/套)	率级/dB(A)	一个、人1口200	级/dB(A)	级/dB(A)
1		电加热炉等效声源 1	40	75	基础减振	70	86
2	南地块	天然气加热炉等效声源1	11	75	基础减振	70	80.4
3	锻造车间1	锯床等效声源 1	38	85	基础减振	80	95.8
4		铣床等效声源	28	85	基础减振	80	94.5
5	南地块	天然气加热炉等效声源2	5	75	基础减振	70	77
6	锻造车间 2	电加热炉等效声源2	4	75	基础减振	70	76
7	南地块锻造车间3	天然气加热炉等效声源3	5	75	基础减振	70	77
8	北地块油压车间	天然气加热炉等效声源 4	5	75	基础减振	70	77
9	北地块锯床车间	锯床等效声源 2	40	85	基础减振	80	96

3) 噪声防治措施

本项目的噪声主要为各生产设备的运行噪声,项目在建设过程中可采取以下隔声降噪措施:①在设计和设备采购阶段下,优先选用低噪声设备,从源头上控制噪声源强;②加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象;③对高噪声设备安装减振降噪措施。

4) 预测结果

通过预测模型计算,项目南地块、北地块各厂界噪声预测结果如下表 4-9、表 4-10。

表 4-9 项目南地块厂界噪声预测结果一览表 单位: dB(A)

15 H	东厂		南厂	7界	西厂		北厂	⁻ 界
项目	昼间	夜间	昼间	夜间	昼间	夜间	昼间	夜间
贡献值	62.5	51.3	63.9	53.6	61.2	50.8	52.5	45.3
标准值	65	55	65	55	65	55	65	55
达标情况	达标							

表 4-10 项目北地块厂界噪声预测结果一览表 单位: dB(A)

项目	东厂	一界	南厂	界	西厂	界	北厂	一界
	昼间	夜间	昼间	夜间	昼间	夜间	昼间	夜间
贡献值	51.2	30.4	57.9	23.9	55.7	20.1	58.3	27.0
标准值	65	55	65	55	65	55	65	55
达标情况	达标							

根据预测结果可以看出,本项目实施后,南地块、北地块各厂界昼间、夜间噪声贡献值排放可以满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准限值。

四、固废

1、营运期固废源强分析

项目副产物主要为废渣、浇铸水口、冒口、废耐火材料、废氧化皮、废金属边角料、废乳化液、经规范处置的含油金属屑、一般废包装材料、沾染化学品的废包装材料、废含油包装桶、废液压油、废润滑油、废含油手套和抹布、集尘灰、废布袋、淬火沉渣和生活垃圾。

(1) 废渣

项目熔炼、精炼过程中会产生的废渣,根据物料平衡可知,中频感应电炉、精炼炉废渣产生量约 6238.909t/a。

(2) 浇铸水口、冒口

熔炼的钢水在浇铸过程中会产生一定量的浇铸冒口,根据物料平衡可知,浇铸冒口产生量约为 15867.749t/a,回用于熔炼工序。判定不属于固体废物。

(3) 废耐火材料

中频感应电炉装料时受冲击,倾动时受震动,沸腾时受金属、熔渣和气流的冲刷,逐渐损坏,故中频感应电炉炉衬需要定期清理更换,即废耐火材料。根据企业提供的资料,废耐

火材料产生量约为 300t/a。

(4) 废氧化皮

项目废氧化皮主要产生于钢锭的锻打及热处理(淬火)。根据企业现有项目实际生产情况类比,废氧化皮在锻打时产生量约为3%;淬火池剥落量约0.1%,以沉渣的形式体现。则废氧化皮产生量为3956.1t/a。

(5) 废金属边角料

企业在生产过程中,车床、铣床机加工为干式加工,生产过程会产生废边角料。根据企业现有实际生产情况类比,废边角料的产生量约为处理量的6%,处理量约127787.3t/a,则废金属边角料产生量约7667.2t/a,回用于熔炼工序。判定不属于固体废物。

(6) 废乳化液

企业在生产过程中,锯床加工等湿式加工需要使用乳化液。

乳化液用量为 10.0t/a,根据建设方提供资料,乳化液在使用过程中与水按照 1:10 进行配置,乳化液循环使用,因被产品带着逐渐损耗,定期更换。废乳化液产生量按稀释后的切削量的 20%计,则废乳化液产生量为 22t/a。

(7) 经规范处置的含油金属屑

项目含油金属屑设置末端脱油措施,采用"静置(时间≥4h)+离心分离(转速≥1000r/min,分离时间≥3min,负载≤50%)"技术,分离油/水、烃/水混合物或乳化液后,确保金属屑石油烃的含量<3%以下。根据《台州市生态环境局关于印发<台州市机械加工行业工业固废环境管理指南(试行)的通知》(台环函[2022]178号),采用规范处理后的金属屑石油烃的含量<3%以下,为一般固废。项目湿式机加工主要产生工序为锯床加工,根据企业现有实际生产情况类比,含油金属屑产生量约为处理量的 0.1%,则经规范处理后的含油金属屑产生量约120.1t/a。未经规范化处置的金属屑属于危险废物,则应按照危险废物管理处置。

(8) 一般废包装材料

一般废包装材料主要指原料包装及产品过程产生的废包装纸箱、包装袋等,产生量约为 10t/a。

(9) 沾染化学品的废包装材料

生产过程中使用的乳化液为桶装,用量共 10t/a, 包装规格为 170kg/桶, 空桶按 20kg/个计,则项目沾染化学品的废包装材料产生量约为 1.2t/a。

(10) 废含油包装桶

本项目使用的润滑油用量 4t/a,包装规格为 170kg/桶,空桶按 20kg/个计,则项目废润滑油包装桶产生量约为 0.5t/a;淬火油用量 2t/a,包装规格为 170kg/桶,空桶按 20kg/个计,则项目废润滑油包装桶产生量约为 0.2t/a;本项目使用的液压油用量 45t/3a,包装规格为 170kg/桶,空桶按 20kg/个计,则项目废液压油包装桶产生量约为 5.3t/a。故废含油包装桶平

均产生量为 6.0t/a。

(11) 废液压油

本项目生产过程使用液压油,部分液压油在设备运转过程中有所消耗需定期补充,另外部分液压油用于冷却,沾染在产品上带着后需定期补充,液压油3年更换一次,故废液压油产生量为45t/3a。

(12) 废润滑油

本项目生产设备需使用润滑油,损耗量以 20%计,则更换以及设备维修产生的废润滑油产生量预计为 3.2t/a。

(13) 废含油手套和抹布

废含油手套和抹布产生于生产、设备擦拭和维修过程,根据企业生产情况,废含油手套和抹布产生量约为 0.10t/a。

(14) 集尘灰

根据前述工程分析可知,项目熔炼、精炼废气除尘设施收集的粉尘量为 716.174t/a(颗粒物 715.476t/a+固态氟化物 0.698t/a)。根据前述工程分析可知,项目熔炼、精炼废气车间沉降粉尘量为 30.429t/a,浇铸废气车间沉降粉尘量为 4.136t/a,则收集的粉尘合计 750.739t/a。

(15) 废布袋

项目设有布袋除尘装置,布袋使用一段时间出现破损后需进行更换会产生废布袋。熔炼、 精炼废气除尘装置滤袋一般更换频率为1年一次,每次更换量约3.0t/a。

(16) 淬火沉渣

项目工件热处理过程中因高温在表面产生高温氧化铁皮(淬火池),随工件淬火冷却时形成沉渣,产生量约为加工量的 0.1%,则沉渣产生量约为 128t/a,企业定期对淬火池底部进行清理,收集后出售给物资回收公司综合利用。

(17) 生活垃圾

职工生活垃圾产生量按人均 1.0kg/d 计,本项目新增劳动定员为 220 人,则该项目生活垃圾产生量为 66t/a。

运
营
期
环
境
影
响
和
保
护
措
\ / ·

			表 4-11	固体废物污染液	原源强核算一览表	ŧ			
序号	固废名称	产生环节	物理性 状	固废属性	主要有毒有害 物质名称	产废周期	产生量 t/a	利用或处 置量 t/a	最终去向
1	废渣	熔炼、精炼	固	一般工业固废	/	每天	6238.909	6238.909	
2	废耐火材料	熔化炉维修	固	一般工业固废	/	每天	300	300	
3	废氧化皮	锻造	固	一般工业固废	/	每天	3956.1	3956.1	出售给相
4	经规范处置的含 油金属屑 ^①	锯床等加工	固	一般工业固废	/	每天	120.1	120.1	关企业综 合利用
5	一般废包装材料	原料包装	固	一般工业固废	/	每天	10	10	
6	淬火沉渣	水淬	固	一般工业固废	/	每天	128	128	
	!	小 计		一般固废	/	/	10753.109	10753.109	/
7	生活垃圾	职工生活	固	一般固废	/	每天	66	66	环卫部门 清运
8	废乳化液	锯床等加工	固	危险废物	沾染有害物质	每天	22	22	
9	沾染化学品的废 包装材料	原料包装	固	危险废物	沾染有害物质	每天	1.2	1.2	
10	废含油包装桶	原料包装	固	危险废物	沾染有害物质	每天	6.0	6.0	委托有危
11	废液压油	液压设备	液	危险废物	矿物油	毎年	45t/3a	45t/3a	废处置资
12	废润滑油	各生产设备	液	危险废物	矿物油	每月	3.2	3.2	质单位处
13	废含油手套和抹 布	生产过程	固	危险废物	沾染有害物质	每天	0.1	0.1	置
14	集尘灰	废气处理	固	危险废物	重金属	每天	750.739	750.739	
15	废布袋	废气处理	固	危险废物	沾染有害物质	毎年	3.0	3.0	
	1	小 计		危险废物	/	/	831.239	831.239	/

注:①根据《国家危险废物名录(2025 年版)》,含油金属屑(代码为 HW09/900-006-09)为危险废物,若经压榨、压滤、过滤除油达到静置无滴漏后打包压块用于金属冶炼的含油金属屑,利用过程可豁免不按危险废物管理,但产生、贮存、运输环节仍需按照危险废物进行管理。而根据《台州市生态环境局关于印发<台州市机械加工行业工业固废环境管理指南(试行)的通知》(台环函[2022]178 号),采用规范处理后的金属屑石油烃的含量<3%以下,为一般固废。综上考虑,本项目经规范处置的含油金属屑产生、贮存、运输环节仍需按照危险废物进行管理,但可按照一般固废出售给相关企业综合利用。

根据《国家危险废物名录(2025年版)》,项目部分固体废物属于危险废物,其基本情况具体见下表 4-12。

表 4-12 危险废物基本情况一览表

序号	危险废物名称	危险废物类别	危险废物代码	环境危险特性	贮存方式
1	沾染化学品的废包 装材料		900-041-49 含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质	T/In	袋装
2	废含油手套和抹布	HW49 其他废物	900-041-49 含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质	T/In	袋装
3	废布袋		900-041-49 含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质	T/In	袋装
4	废含油包装桶	1111/00 EXTENSE	900-249-08 其他生产、销售、使用过程中产生的废矿物油及沾染矿物油的废弃包装物	Т, І	垛存
5	废润滑油	HW08 废矿物油 与含矿物油废物	900-214-08 车辆、轮船及其它机械维修过程中产生的废发动机油、制动器油、自动变速器油、齿轮油等废润滑油	Т, І	桶装
6	废液压油		900-218-08 液压设备维护、更换和拆解过程中产生的废液压油	Т, І	桶装
7	废乳化液	HW09 油/水、烃 /水混合物或乳 化液	900-007-09 其他工艺过程中产生的废弃的油/水、烃/水混合物或者乳化液	Т	桶装
8	集尘灰 [©]	HW23 含锌废物	312-001-23 废钢电炉炼钢过程中集(除)尘装置收集的粉尘和 废水处理污泥	Т	袋装

注:①现有项目集尘灰根据原环评审批按照一般固废管理与处置,本项目投建后,建议从严归类为HW23(312-001-23),按照危险废物管理与处置。

2、环境管理要求

(1) 一般固废管理要求

本项目一般固体废物贮存利用南地块现有已建的 100m² 一般固废堆场,堆场的建设需满足防渗漏、防雨淋、防扬尘等环境保护要求,一般固废在日常管理中需遵循《中华人民共和国固体废物污染环境防治法》(2020 年 4 月 29 日修订),向所在地生态环境主管部门提供工业固体废物的种类、数量、流向、贮存、利用、处置等有关资料,以及减少工业固体废物产生、促进综合利用的具体措施,并执行排污许可管理

制度的相关规定。企业应按《一般工业固体废物管理台账制定指南(试行)》做好台账记录,并按《浙江省工业固体废物电子转移联单管理办法(试行)》要求规范转移。

(2) 危险废物管理要求

企业在南地块已建有一个 15m² 的危废暂存间,本次技改后,拟在北地块锯床车间增设 1 处 100m² 的危废暂存间。危废暂存间的地面、墙裙用环氧树脂防腐,危险废物堆放场的建设和运作必须满足《危险废物贮存污染控制标准》(GB18597-2023)和《危险废物收集贮存运输技术规范》(HJ2025-2012)要求。危废仓库底部必须高于地下水最高水位,设施地面与裙脚要用坚固、防渗的材料建造,地面必须硬化、耐腐蚀,且表面无裂缝,贮存设施周围应设置围墙或其它防护栅栏,并防风、防雨、防晒、防漏。各类危险废物在产生点及时收集后,采用密封桶进行包装,并转运至危废仓库,用于存放危险废物的容器必须完好无损,必须定期对所贮存的危险废物容器进行检查,发现破损,应及时采取措施清理更换。危险废物在日常管理中要履行申报的登记制度、建立台账制度,委托利用处置应执行报批和转移联单制度。

表 4-13 固废贮存场所(设施)基本情况表

序号	贮存场所 名称	固废名称	废物代码	占地面积 (m²)	贮存 方式	产生量(t)	贮存能力(t)	所需空间 (m³)	贮存周 期
1	H 14	废渣	900-003-S17	()	袋装	6238.909	210	70	2周
2		废耐火材 料	900-011-S17		袋装	300	10	5	2周
3		废氧化皮	900-005-S17		袋装	3956.1	150	30	2周
4	一般固废 堆场	经规范处 置的含油 金属屑	900-011-S17	100	袋装	120.1	4.5	1.0	2周
5		一般废包 装材料	900-009-S59		袋装	10	1	3	1 个月
6		淬火沉渣	900-002-S17		袋装	128	5	1.0	2周
			小计			10753.109	380.5	110	
11	危废暂存	废乳化液	900-041-49	115	桶装	22	2	2.5	1 个月
12	间1、危废	沾染化学	900-249-08	115	垛存	1.2	0.15	2.0	1个月

	暂存间2	品的废包 装材料						
13		废含油包 装桶	900-007-09	垛存	6.0	0.5	10	1 个月
14		废液压油	900-252-12	桶装	45t/3a	45	60	2 个月
15		废润滑油	900-039-49	桶装	3.2	1.0	1.5	2 个月
16		废含油手 套和抹布	900-041-49	袋装	0.1	0.1	0.3	半年
17		集尘灰	900-041-49	袋装	750.739	60	20	3周
18		废布袋	900-252-12	袋装	3.0	3.0	6	每年
			小计		831.239	111.75	102.3	/

注:①项目一般固废堆场面积约 100m², 有效贮存面积按 0.9 计,则有效贮存面积 90m² 左右,平均储存高度按 1.5m 计,则有效储存空间约为 135m³,能满足一般固废暂存需求。

②危废暂存间面积约 115m^2 ,有效贮存面积按 0.9 计,则有效贮存面积 103.5m^2 左右,平均储存高度按 1.5m 计,则有效储存空间约为 155.25m^3 。

③桶装危废废乳化液、废液压油、废润滑油均置于废包装桶内。

④沾染化学品的废包装材料、废油桶有效容积约 170kg,单个桶重量约 20kg,占用空间约 0.25m³。

综上,本项目危废暂存需占用空间约 102.3m³<155.25m³,企业在严格控制贮存周期的前提下,危废暂存间能够满足本项目危废暂存需求。

五、地下水、土壤

(1) 本项目污染源识别

表4-14 地下水、土壤环境影响源及影响因子识别表

污染源	工艺流程/ 节点	污染途径	污染物	影响对象	备注
车间	生产线	大气沉降	颗粒物、氟化物、 二噁英、镍及其化 合物、铬及其化合 物、SO ₂ 、NOx	土壤	连续、正常
危废暂存间	废油	垂直入渗、 地面漫流	危险废物	地下水、土壤	事故
原料仓库	各包装桶	垂直入渗、 地面漫流	石油类	地下水、土壤	事故
化粪池	员工生活	垂直入渗、 地面漫流	COD、氨氮	地下水、土壤	事故
事故应急池	应急池	垂直入渗、 地面漫流	事故废水	地表水、地下 水、土壤	事故

(2) 防治措施

表4-15 企业各功能单元分区防控要求

防渗级别	工作区	防控要求	
重点防渗区	事故应急池、危废暂存间	危废仓库防渗要求依据《危险废物贮存污染控制标准》(GB 18597-2001)要求,渗透系数 $K \le 10^{-10}$ cm/s;其余工作区防渗要求为:等效黏土防渗层厚 ≥ 6.0 m,渗透系数 $\le 1.0 \times 10^{-7}$ cm/s,或者参考 GB18598 执行	
一般防渗区	生产车间	等效粘土防渗层 Mb≥1.5m,K≤10 ⁻⁷ cm/s,或参照 GB16889 执行	
简单防渗	厂区其他区域	一般地面硬化	

在企业做好分区防渗等措施的情况下,对周围土壤、地下水环境无影响,而且厂区内地面已经完成硬化防渗建设,因此,本项目营运期不可能对所在地土壤、地下水环境造成污染。

六、环境风险

经识别,企业风险物质主要为各类原辅料(润滑油、淬火油、液压油、天然气、丙烷等)以及生产过程产生的危险废物。企业应认真落实本报告提出的各项风险防范和应急措施,使项目的风险处于可接受的水平。

为了及时发现和减少事故的潜在危害,确保生命财产和人身安全,有必要建立风险事故 决策支持系统和事故应急监测技术支持系统,在事故发生时及时采取应急救援措施,形成风 险安全系统工程。从环境控制的角度来评价,经采取相应应急措施,能大大减少事故发生概 率,如一旦发生事故,能迅速采取有力措施,减小对环境污染。其潜在的事故风险是可以防 范的。因此项目的建设,从风险评价的角度分析是可行的。

具体分析内容详见"八、环境风险影响专项评价"章节。

运 营 期 环 境 影 响 和 保 护 措

施

七、监测计划

根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污单位自行监测技术 指南 钢铁工业及炼焦化学工业》(HJ 878-2017)、《排污许可证申请与核发技术规范 钢 铁工业》(HJ846-2017),同时结合企业的具体情况,初步制定本项目的污染源监测计划, 企业可委托有资质的检测机构代其开展自行监测,本项目的监测计划建议如下表 4-16。

表4-16 监测计划

	衣4-10 监侧订划							
项目	监测地点	监测因子	监测频次	执行标准				
		颗粒物	1 次/年	《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269号)中的超低排放要求				
		氟化物	1 次/半年	《炼钢工业大气污染物排放标准》 (GB28664-2012)中表3特别排放 限值				
	DA001	二噁英		《炼钢工业大气污染物排放标准》 (GB28664-2012)中表3特别排放 限值				
		镍及其化合物		《大气污染物综合排放标准》 (GB16297-1996)表2中排放限值				
		铬及其化合物		《铁合金工业污染物排放标准》 (GB28666-2012)表6中特别排放限值				
		颗粒物	1 次/年	《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269号)中的超低排放要求				
	DA002	氟化物	1 次/半年	《炼钢工业大气污染物排放标准》 (GB28664-2012)中表3特别排放 限值				
废气		DA002 二噁英		《炼钢工业大气污染物排放标准》 (GB28664-2012)中表3特别排放 限值				
		镍及其化合物	1 次/年	《大气污染物综合排放标准》 (GB16297-1996)表2中排放限值				
		铬及其化合物		《铁合金工业污染物排放标准》 (GB28666-2012)表6中特别排放限值				
	DA003	颗粒物、SO ₂ 、NOx	1 次/季度	《工业炉窑大气污染物排放标准				
	DA004	颗粒物、SO ₂ 、NOx	1 次/季度	(GB9078-1996)》,同时满足《工				
	DA005	颗粒物、SO ₂ 、NOx	1 次/季度	业炉窑大气污染综合治理方案》的通				
	DA006	颗粒物、SO ₂ 、NOx	1 次/季度	知 (环大气[2019]56 号) 重点区域要 求				
	DA007	颗粒物、非甲烷总烃	1 次/年	《大气污染物综合排放标准》 (GB16297-1996)表 2 排放限值				
	炼钢车间无 组织(有完 整厂房车 间)	颗粒物	1 次/年	《炼钢工业大气污染物排放标准》 (GB28664-2012) 中表 4 标准要求				
	厂区内无组织	非甲烷总烃	1 次/年	《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1 中特别排放限值				

		颗粒物	1 次/季度	
		氟化物	1次/年(建议)	《大气污染物综合排放标准》
	广思玉细细			(GB16297-1996) 中表 2 新污染源 大气污染物排放限值要求
	<i>,</i>	非甲烷总烃	1 次/年(建议)	
		铬及其化合物	1次/年(建议)	《铁合金工业污染物排放标准》 (GB28666-2012)表7企业边界大气污 染物浓度限值要求
噪声	厂界	等效 A 声级	1 次/季度	《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的3类标准
土壤	厂区内熔炼 车间附近、 周边公益林	一	1 次/5 年	项目所在地土壤环境执行《土壤环境 质量建设用地土壤污染风险管控标 准(试行)》(GB36600-2018)中 的第二类用地筛选值标准限值

八、环保投资

本项目投资 65000 元,其中环保投资 660 万元,环保投资占项目总投资的 1.02%。环保投资具体见下表 4-17。

表 4-17 建设项目环保投资

类别	治理对象	环保设施	环保投资(万元)			
废气 熔炼/精炼废气		中频感应炉炉体上方设置3套半密闭 式集气房,精炼炉炉体上方设置密闭式 集气罩、布袋除尘器、排气筒	550			
	天然气燃烧废气	排气筒	10			
	废水	北地块新建化粪池	10			
	噪声	设备的隔声降噪、减震降噪	40			
固废	厂内暂存	新建1个危废暂存库	20			
四/及	生活垃圾	环卫部门清运处理	20			
地下水	地下水	地面分区防渗措施等	20			
其他 风险防范		应急风险防范措施和设备等	10			
	合计					
	占项目工程	是投资的百分比(%)	1.02%			

五、环境保护措施监督检查清单

要素	排放口(编	运油.Wm 语口	17 4岁 /日 +內 +世 +ゲ	4. 公共
内容	号、名称) /污染源	污染物项目	环境保护措施	执行标准
大气环境	熔炼废气、 精炼废气	颗粒物、二及 、二及 、全 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	熔炼车间密闭,中频感应炉炉体上方均设置半密闭式集气房,精炼炉炉体上方设密闭式集气房,特集印度气经袋式除集气罩,收集的废气经袋式除尘器处理后通过 20m 高排气筒(DA001/DA002)排放。	颗粒物:执行《炼钢工业大气 污染物排放标准》 (GB28664-2012)中表3特别 排放限值,同时满足《浙江省 钢铁行业超低排放改造实施 计划》(浙环函[2019]269号) 中的超低排放要求; 二噁英和氟化物:《炼钢工业 大气污染物排放标准》 (GB28664-2012)中表3特别 排放限值; 镍及其化合物:《大气污染物 综合排放标准》 (GB16297-1996)表2中排放 限值; 铬及其化合物:《铁合金工业 污染物排放标准》 (GB28666-2012)表6中特别排 放限值。
	天然气燃 烧废气	颗粒物、 SO ₂ 、NOx	收集后经 20m 高排气筒 (DA003/DA004/ DA005/DA006)排放。	执行《工业炉窑大气污染物排放标准(GB9078-1996)》,同时满足《工业炉窑大气污染综合治理方案》的通知(环大气[2019]56号)重点区域要求。
	浇铸废气	颗粒物	车间沉降。	《大气污染物综合排放标准》 (GB16297-1996)表 2 排放 限值。
	淬火废气	颗粒物、非 甲烷总烃	收集并经油雾净化器处理后 通过 20m 高排气筒(DA007) 排放。	《大气污染物综合排放标准》 (GB16297-1996)表 2 排放 限值。
	食堂油烟 废气	 油烟 	收集后经油烟净化装置处理 后排放。	GB18483-2001中型规模标准。
地表水环境	生活污水 /DW001	COD _{Cr} 、氨 氮、BOD ₅ 、 动植物油	生活污水经隔油池+化粪池预 处理后纳管排放。	达到《污水综合排放标准》 (GB8978-1996)三级标准, 其中氨氮执行《工业企业废水 氮、磷污染物间接排放限值》 (DB33/887-2013)中标准。
声环境	生产车间	噪声	在设计和设备采购阶段,优先选用低噪声设备,从源头上控制噪声源强;合理布置设备位置;加强设备的维护,确保设备处于良好的运转状态,杜绝因设备不正常运转时产生的高噪声现象;对噪声源强较大	《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准。

	车间的墙体、门、窗进行隔音 改造,水泵及风机采用减振隔
_i	声消声措施。
电磁辐射	
固体废物	等资料档案; 危险废物按照《危险废物贮存污染控制标准》(GB18597-2023)、《危险废物收集 贮存 运输技术规范》(HJ 2025-2012)进行控制,日常管理中要履行申报的登记制度、建立台帐制度。
土壤及地 下水污染 防治措施	加强清洁生产工作,从源头上减少"三废"发生量,减少环境负担。企业需按照环评要求做好废气防治、地面硬化和分区防渗、固废收集处置,并定期巡查防止事故发生。
生态保护措施	1、严格厂内人员围捕野生动物和盗挖野生植被通过制度的形式,约定在职人员不得上山围捕野生动物、鸟类、爬行类及蛇类,不得盗挖生态保护红线内及山林中的野生植物,禁止上山滥砍滥伐,积极宣讲野生动物、植物保护的相关法律法规。 2、由于本项目工艺原因,可能会产生高温气体或者明火,对已发生明火区域做好防范措施。同时在厂内易燃易爆物质及周边一定区域内设置无烟区,不得出现明火,加强厂区内防火。同时,不得在靠近生态保护红线的区域生火、出现明火等情况,提升防火要求。 3、在厂内靠近生态保护红线区的显眼位置和人员进场进出的通道,设置保护野生动植物、注意森林防火的标识标语,进一步提升员工对野生动植物保护的意识,同时加强员工的防火意识。
环境风险 防范措施	本项目发生事故概率较小,且危险源在厂内,因此,项目的建设从风险评价的角度分析是可行的。建设单位须结合本环评要求,做好安全生产,认真落实风险防范措施,并及时组织编制风险应急预案上报主管部门备案,在日常运营过程中,严格按照应急预案中的要求落实各项措施。
其他环要求	项目建成后企业需持证排污、按证排污,严格执行排污许可制度;需根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污单位自行监测技术指南 钢铁工业及炼焦化学工业》(HJ 878-2017)、《排污许可证申请与核发技术规范 钢铁工业》(HJ846-2017)定期进行例行监测;需保证处理设施能够长期、稳定、有效地进行处理运行,不得擅自拆除或者闲置废气处理设施和废水处理设施,不得故意不正常使用污染治理设施。定期维护、清理环保设备。

六、结论

1、环评审批原则符合性分析

根据《浙江省建设项目环境保护管理办法》(浙江省人民政府令第 388 号第三次修正), 本项目的审批原则符合性分析如下:

- (1)建设项目符合生态保护红线、环境质量底线、资源利用上线和生态环境准入清单的要求本项目位于浙江省三门县海游街道上坑工业园区祥和路 58 号,用地范围内不涉及生态保护红线;本项目所在区域环境质量达标,在采取相关防治措施后,本项目污染物均能达标排放,不会突破所在区域的环境质量底线;项目建成运行后通过内部管理、污染治理等多方面措施,有效地控制污染,符合资源利用上线要求;本项目位于"台州市三门县中心城区产业集聚重点管控单元 ZH33102220110",本项目的建设符合该管控单元的生态环境准入清单要求。
- (2) 排放污染物符合国家、省规定的污染物排放标准和重点污染物排放总量控制要求本项目实施后,本项目总量控制指标为 COD_{Cr} 0.168t/a、NH₃-N 0.008t/a、VOCs0.04t/a、烟粉尘 17.579t/a、SO₂ 2.248t/a、NO_x21.025t/a、铬及其化合物 0.033t/a、镍及其化合物 0.033t/a。根据《浙江省建设项目主要污染总量准入审批办法》(浙环发[2012]10 号),本项目排放的 COD_{Cr}、NH₃-N、铬及其化合物、镍及其化合物不需进行区域替代削减。SO₂ 新增量为 1.458t/a、NO_x 新增量为 13.635t/a、VOCs 新增量为 0.04t/a,按 1:1 进行区域替代削减。SO₂、NO_x 需通过排污权交易,取得有偿使用权。综上,本项目能符合总量控制要求。

2、环评审批要求符合性分析

(1) 建设项目符合国土空间规划的要求

项目实施地属于浙江三门经济开发区滨海科技城区块,用地现状及规划均为二类工业用地,本项目位于城镇集中建设区,用地范围内不涉及永久基本农田和生态保护红线范围,符合国土空间规划要求。

(2) 建设项目符合国家和省产业政策的要求

根据《关于支持打击"地条钢"、界定工频和中频感应炉使用范围的意见》(钢协[2017]23号)第二"关于中(工)频炉在钢铁、铸造行业的使用范围界定"第(二)条"在特殊合金材料生产中,符合下列要求的中(工)频炉,不在关停拆除之列":利用中(工)频炉感应加热熔化金属物料,再经精炼工序冶炼,用于生产精密合金、非晶合金等特殊合金材料。本项目使用的 25吨/30吨中频炉以废钢、铁合金为原料,用于生产特殊合金材料,为锻造生产的配套设备,不属于《产业结构调整指导目录》(2024年本)淘汰类设备中"用于熔化废钢的工频和中频感应炉(根据国家法律法规和国家取缔"地条钢"有关要求淘汰)"的范畴,项目中频炉不在关停拆除之列。项目属于《产业结构调整指导目录(2024年本)》鼓励类项目第十四条机械类中第 11 款高强度、高塑性球墨铸铁件;高性能蠕墨铸铁件;高精度、高压、大流量液压铸件;有色合金

特种铸造工艺铸件;**高强钢锻件**;耐高温、耐低温、耐腐蚀、耐磨损等高性能,轻量化新材料铸件、锻件;高精度、低应力机床铸件、锻件;汽车、能源装备、轨道交通装备、航空航天、军工、海洋工程装备领域用高性能关键铸件、锻件。同时项目已在三门县发展和改革局对该项目进行备案,因此本项目符合国家和省产业政策要求。

3、总结论

浙江三门太和大型锻造有限公司年产 12 万吨锻件项目符合生态保护红线、环境质量底线、资源利用上线和生态环境准入清单的要求,排放污染物符合国家、省规定的污染物排放标准和重点污染物排放总量控制要求,符合国土空间规划、土地利用总体规划、城乡规划、国家和省产业政策的要求;环境事故风险可控。

因此,从环境保护角度看,本项目的建设是可行的。

七、大气专项评价

7.1 项目概况

本项目排放废气污染物涉及二噁英,根据《建设项目环境影响报告表编制技术指南(污染影响类)(试行)》,二噁英属于有毒有害污染物,同时项目厂界 500m 范围内有环境空气保护目标,因此,本项目需设置大气专项评价。

7.2 评价因子及评价标准

1、评价因子

根据项目污染源特点及周边区域环境特征的分析,确定大气环境影响要素的评价因子见表 7-1。

环境要	素	现状评价因子	预测评价因子	总量控制指标
大气环	「境	SO ₂ 、NO ₂ 、PM ₁₀ 、CO、O ₃ 、 PM _{2.5} 、TSP、氟化物、铬及其 化合物、镍及其化合物、二噁 英、非甲烷总烃	TSP、PM ₁₀ 、PM _{2.5} 、氟 化物、铬及其化合物、 镍及其化合物、二噁英、 NO ₂ 、SO ₂ 、非甲烷总烃	NO ₂ 、SO ₂ 、烟粉尘、铬 及其化合物、镍及其化 合物、VOCs

表 7-1 项目大气环境影响评价因子

2、环境质量标准

项目所在区域环境空气为二类区,环境空气质量执行《环境空气质量标准》(GB3095-2012)及修改单(生态环境部公告 2018 年第 29 号)二级标准;二噁英类参照日本环境厅中央环境审议会制定的环境标准;非甲烷总烃、镍及其化合物参照《大气污染物综合排放标准详解》中的建议值;铬及其化合物一次值及昼夜平均值参照执行《苏联工作环境空气和居民区大气中有害无机物的最大允许浓度》,具体标准值如下表 7-2。

污染物	取值时间	浓度限值	单位	标准来源
	年平均	60		
SO_2	24 小时平均	150		
	1 小时平均	500	$\mu g/m^3$	
PM_{10}	年平均	70		
F1VI ₁₀	24 小时平均	150		
	年平均	40		
NO_2	24 小时平均	80	μg/m³	
	1 小时平均	200		
	年平均	50		GB3095-2012
NOx	24 小时平均	100	μg/III	
	1 小时平均	250		
TSP	年平均	200		
151	24 小时平均	300		
СО	24 小时平均	4	mg/m ³	
	1 小时平均	10		
0.	日最大8小时平均	160	$\mu g/m^3$	
O_3	1 小时平均	200	μg/III	

表 7-2 环境空气质量标准

DM	年平均	35		
PM _{2.5}	24 小时平均	75		
氟化物	24 小时平均	7 ⁽¹⁾		
新(化初	1 小时平均	$20^{^{\scriptscriptstyle (1)}}$		
二噁英	年平均	$0.6^{^{\odot}}$	ng TEO /m ³	参照执行日本标准
一吃光	24 小时平均	$1.2^{^{(2)}}$	pg-TEQ /m ³	参照3人11 日本你在
镍及其化合物	一次值	0.003	mg/m ³	大气污染物综合排放
非甲烷总烃	一次值	2.0	mg/m ³	标准详解
	昼夜平均	1.5	$\mu g/m^3$	苏联工作环境空气和
铬及其化合物	1次最大	1.5	μg/m ³	居民区大气中有害无 机物的最大允许浓度 度

注:①适用于城市地区。②二噁英环境空气质量参照执行日本年均浓度标准(0.6 pgTEQ/m³)。 又根据 HJ2.2-2018,对仅有日平均或年均浓度限值的分别按 3 倍、6 倍折算为小时平均浓度,由 此可折算出二噁英日均浓度限值 1.2pgTEQ/m³。

3、废气排放标准

1、有组织排放

本项目中频感应炉、精炼炉产生的颗粒物执行《炼钢工业大气污染物排放标准》(GB28664-2012)中表 3 特别排放限值,同时应满足《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269 号)中的超低排放要求,详见表 7-3、表 7-4; 产生的二噁英和氟化物排放参照执行《炼钢工业大气污染物排放标准》(GB28664-2012)中表 3 特别排放限值,详见表 7-3; 产生的镍及其化合物排放参照执行《大气污染物综合排放标准》(GB16297-1996)表 2 中排放限值,详见表 7-5; 产生的铬及其化合物参照执行《铁合金工业污染物排放标准》(GB28666-2012)表 6 中特别排放限值,详见表 7-6。

锻造、热处理工序采用天然气炉加热,天然气燃烧废气中的颗粒物、二氧化硫、氮氧化物执行《工业炉窑大气污染物排放标准(GB9078-1996)》,根据关于印发《工业炉窑大气污染综合治理方案》的通知(环大气[2019]56号),重点区域原则上按颗粒物、二氧化硫、氮氧化物排放限值分别不高于 30mg/m³、200mg/m³、300 mg/m³,详见表 7-7;食堂设 5 个灶头,油烟排放执行《饮食业油烟排放标准(试行)》(GB18483-2001)中的中型规模标准,详见表 7-8。

本项目淬火废气主要为油雾(以颗粒物计)及非甲烷总烃,污染物排放执行《大气污染物综合排放标准》(GB16297-1996)表 2 中排放限值。详见表 7-5。

此外,项目废气排气筒高度应高出周围半径 200m 范围内最高建筑物 3m 以上。

表 7-3 《炼钢工业大气污染物排放标准》(GB28664-2012)表 3

污染物项目	生产工序或设施	限值(mg/m³)	污染物排放监控位置
氟化物(以F计)	电渣冶金	5.0	
二噁英	电炉	0.5ng-TEQ/m ³	车间或生产设施排气
颗粒物	铁水预处理(包括倒罐、扒渣等)、 转炉(二次烟气)、电炉、精炼炉	15	筒

表7-4 《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269号)

生产工		基准含氧	污染物	项目(n	ng/m ³)	污迹	è 治理设施	
序	生产设施	量(%)	颗粒物	二氧化 硫	氮氧化 物	除尘	脱硫	脱硝
炼钢	铁水预处理、 转炉(二次烟 气)、电炉、 石灰窑、白云 石窑		10		_	鼓励保出器、用湿式 覆 膜滤料滤光	容等造 提定烟 数施行 取 赞胜 我 我 我 我 我 我 我 我 我 我 我 我 我 我 我 更 回 就 我 更 回	炭(焦)、 选择性催化 还原(SCR 等高效脱硝

表 7-5 《大气污染物综合排放标准》(GB16297-1996)表 2

	最高允许排放浓		(kg/h)	无组织排放监控沟	 皮度限值
污染物	度(mg/m³)	排气筒高度(m)	二级	监控点	浓度 (mg/m³)
镍及其化合物	4.3	20	0.26		0.040
颗粒物	100	20	5.9	周界外浓度最高点	1.0
非甲烷总烃	120	20	17		4.0

注:排气筒高度应高出周围 200 米半径范围内的建筑 5 米以上。若排气筒无法满足此高度(如严格限制排放区域的特殊情况),需按排放速率标准值的 50%执行。

表 7-6 《铁合金工业污染物排放标准》(GB28666-2012)表 6

污染物项目	生产工序或设施	限值(mg/m³)	污染物排放监控位置
铬及其化合物	合金熔化炉、电炉、精炼炉	3	车间或生产设施排气筒

表 7-7 《浙江省工业炉窑大气污染综合治理实施方案》

序号	污染物项目	限值	无组织排放最高允许浓度
1	颗粒物	30mg/m^3	5mg/m^3
2	二氧化硫	200mg/m^3	/
3	氮氧化物	300mg/m^3	/
4	烟气黑度	1级	/
5	过量空气系数	1.7	/

注: 1、各种工业炉窑烟囱(或排气筒)最低允许高度为 15m;

- 2、颗粒物、二氧化硫、氮氧化物执行《工业炉窑大气污染综合治理方案》(环大气[2019]56 号) 中的排放限值要求(重点区域);
- B、无组织排放烟尘监测点设置在工业炉窑所在厂房门窗排放口处,并选浓度最大值;
- 4、实测的工业炉窑烟(粉)尘、有害污染物排放浓度,应换算为规定的过量空气系数时的数值。

表 7-8 《饮食业油烟排放标准(试行)》(GB18483-2001)

规模	小型	中型	大型
基准灶头数	≥1, <3	≥3, <6	≥6
对应灶头总功率(108J/h)	≥1.67, <5.00	≥5.00, <10	≥10
对应排气罩面总投影面积(m²)	≥1.1, <3.3	≥3.3, <6.6	≥6.6

最高允许排放浓度(mg/m³)	2.0		
净化设施最低去除率(%)	60	75	85

2、无组织排放

项目炼钢车间无组织排放浓度参照执行《炼钢工业大气污染物排放标准》(GB28664-2012) 中表 4 标准的要求。详见表 7-9。

表 7-9 炼钢车间无组织排放浓度限值

污染物项目	无组织排放源	限值(mg/m³)	标准来源
颗粒物	有厂房生产车间	8.0	CD20664 2012 由主 4
秋红初	无完整厂房车间	5.0	GB28664-2012 中表 4

项目厂区内非甲烷总烃无组织执行《挥发性有机物无组织排放控制标准》(GB37822-2019)中的特别排放限值,具体标准值见表 7-10。

表 7-10 厂区内 VOCs 无组织排放限值

污染物项目	排放限值(mg/m³)	限值含义	无组织排放监控位置
MAIIC	6	监控点处 1h 平均浓度值	大厂总从沿黑账校上
NMHC	20	监控点处任意一次浓度值	在厂房外设置监控点

厂界颗粒物、氟化物、镍及其化合物无组织排放监控浓度参照执行《大气污染物综合排放标准》(GB16297-1996)中表 2 新污染源大气污染物排放限值要求; 铬及其化合物参照执行《铁合金工业污染物排放标准》(GB28666-2012)表 7 企业边界大气污染物浓度限值要求。具体见表 7-11。

表 7-11 企业厂界无组织排放浓度限值

污染物项目	监控点	无组织排放监控浓度限 值(mg/m³)	标准来源					
颗粒物	周界外浓度最高点	1.0						
氟化物(以F计)	周界外浓度最高点	0.02	CD 16207 1006 主 2					
镍及其化合物	周界外浓度最高点	0.040	GB 16297-1996 表 2					
非甲烷总烃	周界外浓度最高点	4.0						
铬及其化合物	周界外浓度最高点	0.006	GB28666-2012 表 7					

7.3 评价工作等级及评价范围

根据《环境影响评价技术导则一大气环境》(HJ2.2-2018)规定,按下表 7-12 进行评价工作等级的划分:

表 7-12 大气环境评价等级判别表

评价工作等级	评价工作分级判据
一级	Pmax≥10%
二级	1%≤Pmax<10%
三级	Pmax<1%

采用《环境影响评价技术导则一大气环境》(HJ2.2-2018)推荐的估算模式 AERSCREEN 进行估算,估算模型参数见表 7-13,估算结果见下表 7-14。

表 7-13 估算模型参数表

秋,10 · 阳开伏王夕从代					
参	数	取值			
城市/农村选项	城市/农村	城市			
城印/农们延坝	人口数 (城市选项时)	43.8 万			
最高环境	竟温度/℃	41.3			
最低环境		-6.0			
土地利	用类型	城市			
区域湿	度条件	潮湿			
是否考虑地形	考虑地形	☑是□否			
走百 	地形数据分辨率/m	90			
	考虑岸线熏烟	□是 ☑否			
是否考虑岸线熏烟	岸线距离/km				
	岸线方向/°				

表 7-14 主要污染源估算模型计算结果表

<u>>=</u>	沙山州西西山	\=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	下风向最大浓度		最大地面浓度	D _{10%} 最远距	评价
75	染源名称	污染物名称	(mg/m^3)	(mg/m^3)	占标率〔%〕	离(m)	等级
		PM_{10}	5.16E-03	0.45	1.15	0	二级
		PM _{2.5}	2.58E-03	0.225	1.15	0	二级
	D 4 001	氟化物	3.54E-04	0.02	1.77	0	二级
	DA001	二噁英	7.52E-11	3.6E-09	2.09	0	二级
		铬及其化合物	1.66E-05	0.0015	1.11	0	二级
		镍及其化合物	1.66E-05	0.003	0.55	0	三级
		PM_{10}	1.03E-02	0.45	2.29	0	二级
		PM _{2.5}	5.16E-03	0.225	2.29	0	二级
	DA002	氟化物	6.08E-04	0.02	3.04	0	二级
	DA002	二噁英	1.50E-10	3.6E-09	4.17	0	二级
		铬及其化合物	1.88E-05	0.0015	1.25	0	二级
		镍及其化合物	1.88E-05	0.003	0.63	0	三级
		PM_{10}	1.03E-03	0.45	0.23	0	三级
	DA003	$PM_{2.5}$	5.16E-04	0.225	0.23	0	三级
点源	DA003	SO_2	1.51 E-03	0.5	0.30	0	三级
		NOx	1.41E-02	0.25	5.65	0	二级
		PM_{10}	9.63E-04	0.45	0.21	0	三级
	DA004	$PM_{2.5}$	4.82E-04	0.225	0.21	0	三级
	DA004	SO_2	1.17E-03	0.5	0.18	0	三级
		NOx	1.09E-02	0.25	4.38	0	二级
		PM_{10}	1.13E-03	0.45	0.25	0	三级
	DA005	PM _{2.5}	5.64E-04	0.225	0.25	0	三级
	DA003	SO_2	1.66E-03	0.5	0.33	0	三级
		NOx	1.55E-02	0.25	6.18	0	二级
		PM_{10}	1.59E-03	0.45	0.35	0	三级
	DA006	PM _{2.5}	7.95E-04	0.225	0.35	0	三级
	DA000	SO_2	2.34E-03	0.5	0.47	0	三级
		NOx	2.18E-02	0.25	8.72	0	二级
	DA007	PM_{10}	1.83 E-02	0.45	4.06	0	二级

		$PM_{2.5}$	9.18 E-03	0.225	4.08	0	二级
		非甲烷总烃	9.03 E-03	2	0.45	0	三级
		TSP	2.26E-01	0.9	25.13	150	一级
		PM_{10}	1.13E-01	0.45	25.13	150	一级
	熔磨左筒	$PM_{2.5}$	5.66E-02	0.225	25.13	150	一级
	熔炼车间 1/1F	氟化物	3.00E-03	0.02	14.99	100	一级
	1/1Γ	二噁英	3.30E-10	3.6E-09	9.16	0	二级
		铬及其化合物	4.28E-04	0.0015	28.56	150	一级
		镍及其化合物	4.28E-04	0.003	14.28	75	一级
		TSP	5.62E-01	0.9	62.46	325	一级
面源		PM_{10}	2.81E-01	0.45	62.50	325	一级
川 //尔	熔磨左筒	$PM_{2.5}$	1.40E-01	0.225	62.50	325	一级
	熔炼车间 2/1F	氟化物	7.45E-03	0.02	37.24	225	一级
	2/1Γ	二噁英	8.19E-10	3.6E-09	22.76	150	一级
		铬及其化合物	1.06E-03	0.0015	70.95	350	一级
		镍及其化合物	1.06E-03	0.003	35.48	225	一级
		TSP	1.61E-01	0.9	17.88	100	一级
	锻造车间	PM_{10}	8.04E-02	0.45	17.88	100	一级
	1/1F	$PM_{2.5}$	4.02E-02	0.225	17.88	100	一级
		非甲烷总烃	1.61 E-02	2.0	0.8	0	三级

经计算结果可知,最大占标率 P_{max}: 70.95%,评价等级为一级。

评价范围: 自厂界外延 2.5km 的矩形范围。

7.4 环境保护目标

根据现场踏勘,项目大气环境、环境风险保护目标见表 7-15,敏感目标和项目厂区的相对位置关系见图 7-1。

表 7-15 大气环境、环境风险保护目标

17.4克 冊 丰	to It		坐标/m			<i>→ 1</i> -	上广田县汇始 庇南 /)	工工业之工工业
环境要素	名称	X	Y	保护对象	保护内容	方位	与厂界最近的距离(m)	环境功能区
	湘山村	339869	3221854	居民	约 1400 人	NE	2700	
	城西村	339598	3221090	居民	约 2800 人	NE	1685	
	松门村	339559	3221730	居民	约 1400 人	NE	2220	
	金叶村	338895	3220810	居民	约 1250 人	NE	1020	
	祥和村	339181	3219872	居民	约 4200 人	NE	570	
	下坑村	338599	3220143	居民	约 4200 人	N	520	
	上坑村	338196	3219821	居民	约 2100 人	N	400	
	后郭村	336788	3218423	居民	约 1400 人	W	1060	
	前郭村	337056	3218422	居民	约 1200 人	SW	1250	
	港溪村	336550	3217642	居民	约 350 人	SW	2100	
	溪东村	335958	3218305	居民	约 1250 人	SW	2530	
大气环境	下谢村	335915	3216369	居民	约 280 人	SW	3590	环境空气二类区
	小坑村	341127	3218205	居民	约 210 人	SE	2410	
	石头岙村	340038	3217559	居民	约 1250 人	SE	1570	
	下朱路村	339840	3216607	居民	约 400 人	SE	2200	
	马村	340694	3216595	居民	约 120 人	SE	2860	
	三门县实验学校	340320	3221784	师生	约 2200 人	NE	2910	
	三门第二高级中学	339352	3221260	师生	约 3100 人	NE	1950	
	上叶小学	338410	3220350	师生	约 1300 人	N	915	
	上叶实验幼儿园	338233	3220021	师生	约 300 人	N	670	
	马娄小学	337026	3218574	师生	约600人	W	1420	
	三门康宁医院	337434	3219437	医患	约100人	W	980	
	公路路政管理大人二中队	337541	3219510	行政人员	约60人	W	900	
	湘山村	339869	3221854	居民	约 1400 人	NE	2700	
环境风险	城西村	339598	3221090	居民	约 2800 人	NE	1685	风险可控
小块八哑	松门村	339559	3221730	居民	约 1400 人	NE	2220	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	金叶村	338895	3220810	居民	约 1250 人	NE	1020	

	1	1	1	1		,
祥和村	339181	3219872	居民	约 4200 人	NE	570
下坑村	338599	3220143	居民	约 4200 人	N	520
上坑村	338196	3219821	居民	约 2100 人	N	400
后郭村	336788	3218423	居民	约 1400 人	W	1060
前郭村	337056	3218422	居民	约 1200 人	SW	1250
港溪村	336550	3217642	居民	约 350 人	SW	2100
溪东村	335958	3218305	居民	约 1250 人	SW	2530
下谢村	335915	3216369	居民	约 280 人	SW	3590
小坑村	341127	3218205	居民	约 210 人	SE	2410
石头岙村	340038	3217559	居民	约 1250 人	SE	1570
下朱路村	339840	3216607	居民	约 400 人	SE	2200
马村	340694	3216595	居民	约 120 人	SE	2860
三门县实验学校	340320	3221784	师生	约 2200 人	NE	2910
三门第二高级中学	339352	3221260	师生	约 3100 人	NE	1950
上叶小学	338410	3220350	师生	约 1300 人	N	915
上叶实验幼儿园	338233	3220021	师生	约 300 人	N	670
马娄小学	337026	3218574	师生	约 600 人	W	1420
三门康宁医院	337434	3219437	医患	约100人	W	980
公路路政管理大人二中队	337541	3219510	行政人员	约60人	W	900
上卢村	339164	3215888	居民	约 300 人	S	2660
水岸公馆	340918	3222151	居民	约 600 人	NE	3330
海游镇区	341285	3222256	居民	约 2400 人	NE	3870

注: 溪东村、港溪村、前郭村、后郭村(下图 7-1 蓝线所示村庄)村域范围内少量土地现状为空地,尚未建设民居,同规划为居住用地。本环评上表所述村庄保护目标已包含此类未建成区块。除此外,项目周边不存在其他规划环境保护目标。

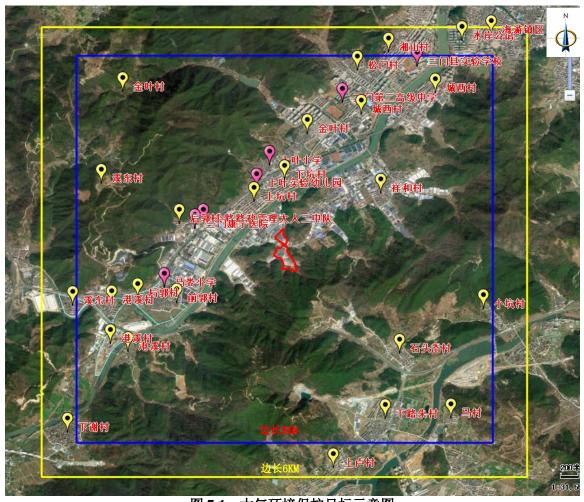


图 7-1 大气环境保护目标示意图

7.5 环境质量现状调查

1、达标区判定

根据大气环境功能区划分方案,项目所在地为二类功能区,环境空气质量执行《环境空气质量标准》(GB3095-2012)及其修改单(生态环境部公告 2018 年第 29 号)二级标准。根据《台州市环境质量报告书(2023 年)》公布的相关数据,三门县基本污染物达标情况如下表 7-16。

	农7-10 二门安小克工(灰里巩伏厅)(农						
污染物	年评价指标	现状浓度/	标准值/	占标率/	达标		
75架物 年评价指标		$(\mu g/m^3)$	$(\mu g/m^3)$	(%)	情况		
DM	年平均质量浓度	23	35	66	达标		
$PM_{2.5}$	第95百分位数日平均质量浓度	46	75	61	达标		
PM_{10}	年平均质量浓度	40	70	57	达标		
PIVI ₁₀	第95百分位数日平均质量浓度	78	150	52	达标		
NO_2	年平均质量浓度	20	40	50	达标		
NO_2	第98百分位数日平均质量浓度	45	80	56	达标		
SO_2	年平均质量浓度	5	60	8	达标		
302	第98百分位数日平均质量浓度	6	150	4	达标		
CO	年平均质量浓度	500	-		- 1		
CO	第95百分位数日平均质量浓度	800	4000	20	达标		

表 7-16 三门县环境空气质量现状评价表

0	最大8小时年均浓度	95	-		-
O_3	第 90 百分位数 8h 平均质量浓度	129	160	81	达标

由上表可知,建设项目所在地区域环境空气能满足二类功能区的要求,属于环境空气质量达标区。

2、补充监测

为了解建设项目所在地特征污染因子环境质量现状,本次评价期间委托台州普洛赛斯检测科技有限公司(报告编号:普洛赛斯(台)检字第2024H0936号、第2025H0894号)和江苏全威检测有限公司(江苏全威第20240654号)对项目附近大气进行了采样监测,同时,报告引用台州三飞检测科技有限公司监测数据(报告编号:JJ20240316)进行分析。监测点位图详见附图13。

表 7-17 监测点位、监测因子一览表

表 7-18 监测时间、监测频次一览表

_	

表 7-19 特征污染因子环境监测数据及评价结果

注: 低于检出限的因子计算浓度占标率取检出限的一半计算。

由现状监测结果可知,项目所在区域环境空气质量中 TSP(日均值)、氟化物(小时值、日均值)均能满足《环境空气质量标准》(GB 3095-2012)二级标准及修改单要求;二噁英(日均值)能满足日本环境厅中央环境审议会制定的环境标准;镍及其化合物(小时值)、非甲烷总烃(一次值)满足大气污染物综合排放标准详解计算标准;铬及其化合物(小时值)能满足苏联工作环境空气和居民区大气中有害无机物的最大允许浓度度限值,项目所在地空气质量现状良好。

7.6 工程分析

本项目营运期产生的废气主要为熔炼废气、精炼废气、浇铸废气、天然气燃烧废气、淬火废气和食堂油烟废气。

1、熔炼废气、精炼废气

(1) 废气产生情况

根据设计,本项目熔炼废气、精炼废气合并处理,熔炼废气、精炼废气中的主要污染因子为颗粒物、氟化物、镍及其化合物、铬及其化合物、二噁英。

1)颗粒物

①中频炉熔炼废气

中频感应炉熔炼采用电加热,故生产过程中会产生烟尘。本项目中频炉主要用于熔化废钢(废低碳钢、废铬钼钢、废模具钢),根据业主提供的材料,本项目废钢洁净度较高,基本无铁锈,品质较好,从源头阶段减少了烟尘产生量。根据参考文献《中国电(弧)炉炼钢粉尘处理现状》(河南冶金,2011年8月第19卷第4期),"电炉粉尘的主要来源是:①易挥发的低熔点非铁质金属;②在渣气界面因 CO 气泡爆裂而扬起的铁和渣;③低密度添加剂,比如石灰。由于本项目不在中频炉阶段添加低密度添加剂,故中频炉的产污系数较电炉小。根据《排放源统计调查产 排污核算方法和系数手册》(生态环境部公告 2021年第24号)——"3120炼钢行业系数手册":本手册未覆盖的产品包括液态钢、感应炉钢和重熔钢,模具钢、感应炉钢主要存在于机械行业,其产污系数可参照机械行业的铸钢件进行选取。故中频感应炉熔炼过程产生的烟尘产污系数根据《排放源统计调查产排污核算方法和系数手册》(生态环境部公告2021年第24号)——"机械行业系数手册"确定,具体见下表7-20。

工段 名称	产品 名称	原料名称	工艺名 称	规模等级	污染物指标		单位	产污系 数	末端治理 技术名称			
铸造	铸件	生铁、废钢、 铁合金、中	熔炼(感	所有规模	废气	工业废气量	立方米/吨- 产品	7483	/			
		石灰石、增	及其他)			颗粒物	千克/吨-产 品	0.479	袋式除尘			

表7-20 机械行业系数表-中频炉 单位: t/a

根据物料平衡,本项目熔炼/精炼的产品约 147744.32t/a,故中频感应炉熔炼过程颗粒物产生量为 70.77t/a。

②LF 精炼炉/真空脱气炉精炼废气

本项目中频炉配套一台 LF 精炼炉及一台真空脱气炉用于精炼工序。真空脱气过程无需加热,因此精炼工序大部分烟尘产生于 LF 精炼炉。

LF 精炼炉采用电加热,生产过程中会产生大量烟尘。根据《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号)——"3120 炼钢行业系数手册":本手册未覆盖

的产品包括液态钢、感应炉钢和重熔钢,模具钢、感应炉钢主要存在于机械行业,其产污系数可参照机械行业的铸钢件进行选取。故精炼炉精炼过程产生的烟尘产污系数根据《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号)——"机械行业系数手册"确定,具体见下表 7-21。

产品 产污系 工段 工艺名 规模 末端治理 原料名称 单位 污染物指标 名称 名称 称 等级 技术名称 数 立方米/吨-工业废气量 / 14372 废钢、中间||熔炼(电弧炉 产品 所有 铸件 合金锭、石 /LF 炉/VOD 废气 铸造 规模 千克/吨-产 灰石 炉) 颗粒物 4.67 袋式除尘 品

表7-21 机械行业系数表-精炼炉 单位: t/a

本项目熔炼/精炼的产品约 147744.32t/a, 故精炼炉精炼过程颗粒物产生量为 689.97t/a。 熔炼、精炼过程产尘量合计约 760.74t/a。

2) 氟化物

项目精炼炉精炼过程需添加生石灰提高炉渣碱度,但提高碱度往往会使炉渣变稠,因此需添加茧石用于稀释炉渣而不降低炉渣碱度,萤石用量约 125t/a,氟化钙含量约 80%,用量为 100t。氟元素含量约占氟化钙的 49%,即 49t/a。熔炼/精炼过程中,少量的氟化钙受热分解,生成 HF 及 SiF 等氟化物,参考北京科技大学博士学位开题报告,炼钢工业氟化物约 2%排入大气,气氟/固氟 =1/5。项目熔炼过程氟化物产生量约为 0.98t/a,其中气态氟化物 0.164t/a、固态氟化物 0.816t/a。考虑到氟化物挥发速率不稳定,保守起见,其挥发时间以 6h/d 计,全年合计约 1800h。

3) 二噁英

废钢炼钢工艺中二噁英(PCDD/Fs)主要产生于熔炼工序,作为熔炼原料的废钢,一般都含有油脂、油漆涂料、塑料等有机物,熔炼过程特别是废钢初期熔化过程会有二噁英生成。废钢在初期熔化过程中,其中的油脂、油漆、涂料、塑料等有机物因受热而先生成"前驱体"类物质(如各类含氯苯系物),然后通过一系列氯化反应、缩合反应、氧化反应等可以生产 PCDD/Fs。废钢中含有的铜、铁、镍、锌等金属对二噁英的生成具有催化作用,高温热烟气在冷却到 450~250℃ 过程中,在这些金属粒子的催化作用下,会加速二噁英的生成。

熔炼烟气中的二噁英产生量采用类比法核算,参考文献《电弧炉炼钢过程的二噁英及抑制措施》(中图分类号: X7701.7,文章编号: 2095-672X(2014) 05-0079-04),国内电炉直排烟气的二噁英毒性当量为 0.05-0.25ngTEQ/m³,均值为 0.13ngTEQ/m³。本项目只接收符合《废钢铁》(GB/T4223-2017)的废钢,通过控制外购废钢的质量,最大限度地减少含油脂、油漆、涂料、塑料等含氯有机物和放射性物质废钢的入炉量,从源头上预防二噁英的产生。同时熔炼废气采用高效除尘器净化,利于烟气中二噁英类物质的去除;类比同类二噁英处理措施的去除效率,保守估计二噁英净化效率取 50%。本项目外购经处理后的合格废钢,从源头上控制二噁英可能产生量,

本评价取均值 0.13ngTEQ/m³ 对二噁英源强进行估算,项目熔炼废气中二噁英有组织产生量约为 2.106×10^{-7} t/a,烟气收集效率以 95%计,则二噁英有组织产生量约为 1.108×10^{-8} t/a,合计产生量为 2.217×10^{-7} t/a。

4) 重金属烟尘(铬及其化合物、镍及其化合物)

企业铁合金原料和废钢原料中含有的主要重金属为铬、镍,在熔炼过程中绝大部分进入模具钢产品中,少量进入炉渣中,极少量随着烟气排放,再经布袋除尘器处理后,绝大部分随烟尘颗粒一并截留,极少部分排到大气环境中。经查阅,《污染源强核算技术指南 钢铁工业》(HJ885-2018)、《排污许可证申请与核法技术规范 钢铁工业》(HJ846-2017)、《炼钢工业大气污染物排放标准》(GB28664-2012)、《排污单位自行监测技术指南 钢铁工业及炼焦化学工业》(HJ878-2017)中均未对炼钢装置烟气中的重金属作出核算和控制要求;企业现有项目熔炼废气排放口重金属排放浓度未检出,镍及其化合物的排放浓度为<0.004mg/Nm³,铬及其化合物的排放浓度为<0.009mg/Nm³。保守考虑,本项目铬及其化合物的核算排放浓度取 0.01mg/Nm³,镍及其化合物的核算排放浓度取 0.01mg/Nm³。

(2) 废气收集、处理措施

①企业拟设 2 个熔炼车间,要求熔炼车间密闭微负压。熔炼车间 1 内配备 1 台 25t 中频炉+1 台 25tLF 精炼炉+1 台 25t 真空脱气炉,拟承担 3 万吨/年的产能负荷;熔炼车间 2 内配备 2 台 30t 中频炉+1 台 60tLF 精炼炉+1 台 100t 真空脱气炉,拟承担 9 万吨/年的产能负荷。两个熔炼车间各设一套废气处理系统,两个熔炼车间的原辅料使用比例统一以 1:3 考虑。

②中频感应炉炉体上方均设置半密闭式集气房,精炼炉炉盖自带集气管道(炉盖即可看作全密闭式集气罩),真空脱气炉设有抽气管道,所有烟气通过管道收集后一并进入袋式除尘器(覆膜滤袋)进行处理。

③根据企业提供的设计方案,熔炼车间 1 废气处理设施收集风量取 150000m³/h,收集的废气一并进入袋式除尘器(覆膜滤袋)进行处理后 20m 高排气筒(DA001)排放;熔炼车间 2 废气处理设施收集风量取 300000m³/h,收集的废气一并进入袋式除尘器(覆膜滤袋)进行处理后 20m 高排气筒(DA002)排放。

(3) 废气排放情况

中频感应炉和精炼炉过程产生的烟尘收集效率按 95%进行考虑,颗粒物(含铬及其化合物、镍及其化合物)去除效率按 99%进行考虑、二噁英 去除效率按 50%进行考虑、气态氟化物去除效率为 0、固态氟化物(尘氟)去除率按 90%考虑;另外,颗粒物粒径较大,无组织排放的颗粒物按 80% 车间内沉降进行考虑,故熔炼、精炼工序废气产生及排放情况见下表 7-22。

表7-22 熔炼、精炼工序废气产生与排放情况汇总

					有组织(DA0	01)			无组织		
产污工序	污染因子	产生量(t/a)	风量	产生量	排放量	排放速率	排放浓度	产生量	排放量	排放速率	
			(m^3/h)	(t/a)	(t/a)	(kg/h)	(mg/m^3)	(t/a)	(t/a)	(kg/h)	
	颗粒物	190.185		180.676	1.807	0.502	3.347	9.509	1.902	0.528	
熔炼、精炼	铬及其化合物	0.526		0.5	0.005	0.0015	0.01	0.026	0.005	0.001	
(熔炼车间	镍及其化合物	0.526	150000	0.5	0.005	0.0015	0.01	0.026	0.005	0.001	
1)	氟化物	0.245		0.233	0.058	0.032	0.213	0.012	0.012	0.007	
	二噁英	5.543E-08		5.266E-08	2.633E-08	7.314E-09	4.876E-08	2.772E-09	2.77E-09	7.70E-10	
			产生量		,	有组织(DA0	02)			无组织	
产污工序	污染因子) 土里 (t/a)	风量	产生量	排放量	排放速率	排放浓度	产生量	排放量	排放速率	
		(va)	(m^3/h)	(t/a)	(t/a)	(kg/h)	(mg/m^3)	(t/a)	(t/a)	(kg/h)	
	颗粒物	570.555		542.027	5.420	1.506	5.020	28.528	5.706	1.585	
熔炼、精炼	铬及其化合物	1.158		1.1	0.011	0.003	0.01	0.058	0.012	0.003	
(熔炼车间	镍及其化合物	1.158	300000	1.1	0.011	0.003	0.01	0.058	0.012	0.003	
2)	氟化物	0.735		0.698	0.175	0.097	0.323	0.037	0.037	0.021	
	二噁英	1.663E-07		1.580E-07	7.900E-08	2.194E-08	7.313E-08	8.315E-09	8.31E-09	2.31E-09	
颗粒物 760.74 有组织排放小计 7.227t/a,无组织排放小计 7.608t/a,合计 14.835t/a								l			
	铬及其化合物	1.684			有组织排放小	\计 0.016t/a,∋	E组织排放小i	+ 0.017t/a,	合计 0.033t/a		
合计	镍及其化合物	1.684	/		有组织排放小	、計 0.016t/a, 刃	E组织排放小i	+ 0.017t/a,	合计 0.033t/a		
	氟化物	0.98	,	有组织排放小计 0.233t/a,无组织排放小计 0.049t/a,合计 0.282 t/a							
	二噁英	2.217E-07		有组织	!排放小计 1.0:	53E-07t/a,无组	组织排放小计	1.108E-08t/a	,合计 1.164E	E-07 t/a	

注:中频炉作业时间按 12h/d、3600h/a 考虑; 精炼炉作业时加盖, 但炉盖本身自带集气管道, 因此精炼炉作业时间即精炼废气排放时间, 同为 12h/d、3600h/a。考虑到氟化物挥发速率不稳定, 保守起见, 其挥发时间以 6h/d 计, 全年合计约 1800h。

2、浇铸工序废气

原料经精炼炉精炼后,需倒入模具内浇铸成钢锭,浇铸过程中会产生一定量烟尘。根据美国俄亥俄州环境保护局和污染工程分公司编制的《逸散性工业粉尘控制技术》中钢的生产的逸散尘"连续铸锭和常规注模"排放因子 0.035kg/t(不加铅钢)。本项目浇铸钢量约为 147744.32t/a,可知浇铸工序粉尘产生量约为 5.171t/a(1.436kg/h,按 3600h/a 计)。由于排放烟尘主要成分为金属氧化物,比重较大,约 80%沉降在周边及车间内,少量以无组织的形式排放。产生与排放情况详见下表 7-23。

	74 =											
产污工序	运动国子	产生量		无组织								
厂行工厅	污染因子	(t/a)	产生量(t/a)	排放量(t/a)	排放速率(kg/h)							
熔炼车间1	颗粒物	1.293	1.293	0.259	0.072							
熔炼车间 2	秋灯红初	3.878	3.878	0.776	0.216							
合计		5.171	5.171	1.035	0.288							

表 7-23 浇铸工序废气产生与排放情况汇总

3、锻造、热处理工序天然气燃烧废气

项目锻造车间 1、锻造车间 2、锻造车间 3、油压车间均配套有天然气加热炉,为锻压、热处理工序供热。锻造、热处理工序产生的废气主要为配套加热炉采用天然气燃烧时产生的燃烧废气。本项目锻造车间 1、锻造车间 2、锻造车间 3、油压车间的天然气用量约为 1124 万 m³/a,上述车间使用量分别占 40%、20%、20%、20%左右。天然气燃烧过程污染物产生量参照《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号)——"机械行业系数手册"确定,天然气燃烧产污系数见下表 7-24。

	PC: = - / C/M C/M//PU//C C H (3 / C)/C	— — — — — — — — — — — — — — — — — — —
燃料类型	污染物指标	产污系数
	工艺废气量	$13.63 \text{m}^3/\text{m}^3$
	颗粒物 ^②	0.000286kg/m^3
人然气	SO_2	$0.000002 S^{\odot} kg/m^3$
	NOx	0.001871kg/m^3

表7-24 天然气燃烧废气各污染物产生系数

注①含硫量 S 指燃气收到基硫分含量,单位为毫克/立方米。企业天然气使用符合《天然气》 (GB1780-2018)二类气标准的管道天然气,S 取值 100。②根据现有项目天然气加热炉实测数据,排放浓度为未检出($<20\,\mathrm{mg/m}^3$),本项目天然气加热炉排放浓度保守考虑以 $10\,\mathrm{mg/m}^3$ 计。

天然气燃烧产生废气收集后各自经20m高排气筒排放,各燃烧废气排放参数见表7-25,产排源强见和表7-26。

		/ t//// t/////////////////////////////	4411/012/201		
参数 工序	供热方式	天然气消耗 量	排放方式	运行时间 (h/年)	排气筒 编号
锻造/热处理(锻造车间1)	间接加热	449 万 m³/a	收集后经 20m 高 排气筒排放。	4800h	DA003
锻造(锻造车间 2)	间接加热	225 万 m³/a	收集后经 20m 高 排气筒排放。	4800h	DA004

表7-25 天然气燃烧废气排放参数

锻造(锻造车间 3)	间接加热	225 万 m³/a	收集后经 20m 高 排气筒排放。	4800h	DA005
锻造 (油压车间)	间接加热	225 万 m³/a	收集后经 20m 高排气筒排放。	4800h	DA006

表7-26 天然气燃烧废气各污染物产生及排放情况

工序	用量	排气筒	污染物名 称	产生量 t/a	排放量 t/a	排放速 率 kg/h	排放 浓度 mg/m³
好心生/th 4k			废气量	$6.12 \times 10^7 \text{m}^3/\text{a}$	$6.12 \times 10^7 \text{m}^3/\text{a}$	/	/
報造/热处 理(報造车	449 万	DA003	颗粒物	0.612	0.612	0.128	10
间1)	m^3/a	DA003	SO_2	0.898	0.898	0.187	14.7
FJ 17			NOx	8.401	8.401	1.750	137
			废气量	$3.07 \times 10^7 \text{m}^3/\text{a}$	$3.07 \times 10^7 \text{m}^3/\text{a}$	/	/
锻造(锻造	225 万	DA004	颗粒物	0.307	0.307	0.064	10
车间 2)	m ³ /a	DA004	SO_2	0.450	0.450	0.094	14.7
			NOx	4.208	4.208	0.877	137
			废气量	$3.07 \times 10^7 \text{m}^3/\text{a}$	$3.07 \times 10^7 \text{m}^3/\text{a}$	/	/
锻造(锻造	225 万	DA 005	颗粒物	0.307	0.307	0.064	10
车间 3)	m^3/a	DA005	SO_2	0.450	0.450	0.094	14.7
			NOx	4.208	4.208	0.877	137
			废气量	$3.07 \times 10^7 \text{m}^3/\text{a}$	$3.07 \times 10^7 \text{m}^3/\text{a}$	/	/
锻造(油压	225 万	D 4 006	颗粒物	0.307	0.307	0.064	10
车间)	m^3/a	DA006	SO_2	0.450	0.450	0.094	14.7
			NOx	4.208	4.208	0.877	137

注:加热炉锻造+热处理炉加热、保温工作时间合计以16h/d、4800d/a考虑。

4、淬火废气(油雾)

本项目部分产品需进行淬火加工,工件加热并保温一段时间,然后按不同工艺要求分别于油淬池或水淬池内进行快速冷却。使用淬火油进行火处理时淬火油瞬间受热将挥发形成油雾。淬火油雾以颗粒物为主,主要因为其形成机制是液态油的物理雾化而非化学分解,且淬火油本身的高沸点特性限制了挥发性有机物的生成。参考生态环境部 2021年发布的《排放源统计调查产排污核算方法和系数手册》33-37机械行业系数手册中热处理工艺产排污系数表,淬火处理(淬火油)颗粒物产污系数取200kg/t原料(淬火油)、挥发性有机物产污系数取0.01kg/t原料(淬火油)。本项目需进行油淬热处理的工件约400t/a,油淬池内淬火油年补充量约2t。产生的油雾主要考虑颗粒物,产生量约为0.4t/a(1.333kg/h,按300h/a计)。淬火过程中挥发性有机物按照0.01kg/t原料(淬火油)核算时产生量极少,环评保守考虑以消耗量的2%核算排放量,则淬火废气中挥发性有机物(以非甲烷总烃计)产生量为0.04t/a(0.133kg/h,按300h/a计)。

本项目油淬池需设置侧吸式集气罩,罩口设计风速为1.2m/s,罩口面积约4m²,集风罩风量应不低于17280m³/h,考虑风压管道的阻力损失、设备阻力损失,设计风量为20000m³/h。本项目淬火废气收集并经油雾净化器处理后通过20m高排气筒(DA007)排放,集气罩捕集率取70%,油雾净化器对颗粒物的净化效率取80%,对非甲烷总烃的去除效率以0计。

淬火废气污染物产生及排放情况表7-27。

表7-27 淬火废气污染物产生及排放情况

	产生量	立出油南	风机风量 (m³/h)	此焦油	处理效		排	放情况	
污染物) 土里 (t/a))主選挙 (kg/h)		率(%)	室(%)	排放量	(t/a)	排放速率	排放浓度
	(va)				十(70)	计从里	(va)	(kg/h)	(mg/m^3)
油雾(颗						有组织	0.056	0.187	9.3
超勢(秋	0.4	1.333		70	80	无组织	0.120	0.400	/
イエイク フ ノ			20000			合计	0.176	/	/
非甲烷			20000			有组织	0.028	0.093	4.7
お早焼	0.04	0.133		70	0	无组织	0.012	0.04	/
心灶					. [合计	0.04	/	/

5、食堂油烟

本项目劳动定员 220 人,根据相关资料类比分析,人均食用油日用量约 30g/人·d,则食用油消耗量为 6.6kg/d、1.98t/a。炒作时油烟挥发一般为用油量的 1%~3%,本环评取 2%,则油烟产生量为 0.040t/a。去除效率为 75%油烟净化设施,油烟废气经油烟净化装置处理后至建筑屋顶高空排放,食堂基准风量(5 个灶头)为 10000m³/h,工作时间 1000h/a。油烟废气排放量为 0.01kg/h、0.010t/a,油烟排放浓度为 1.0mg/m³。

6、废气污染源强汇总

本项目运营阶段废气污染源强核算情况详见下表7-28。

表7-28 废气污染源强核算结果及相关参数一览表

工序/					污染物	产生		治理	里措施		污染?	物排放		排放
生产线	装置	污染源	污染物	核算方法	废气产生 量/(m³/h)	产生浓度 /(mg/m³)	产生速率 /(kg/h)	工艺	效率/%	核算方法	废气排 放量 /(m³/h)	排放浓度 /(mg/m³)	排放速率 /(kg/h)	时间 /h
			颗粒物	产污系数法		334.587	50.188		颗粒物	产污系数法		3.347	0.502	
			氟化物	产污系数法		0.86	0.129	袋式除	99;	产污系数法		0.213	0.032	
		DA001	二噁英	产污系数法	150000	9.73E-08	1.46E-08	(覆膜 物 0; 固态 —	(覆膜 物 0; 回念 - 氟化物 氯袋) 氟化物	产污系数法	150000	4.876E-08	7.314E-09	
	中频	Dittool	铬及其化合物	产污系数法	130000	0.926	0.139			产污系数法	130000	0.01	0.0015	
熔炼/	精炼 真空		镍及其化合物	产污系数法		0.926	0.139	(応殺)		产污系数法		0.01	0.0015	3600
植炼	具空 脱气		颗粒物	产污系数法		/	0.528	/		产污系数法		/	0.528	
	炉		氟化物	产污系数法		/	0.007	/		产污系数法		/	0.007	
		无组织	二噁英	产污系数法	/	/	7.70E-10	/	/	产污系数法	/	/	7.70E-10	
			铬及其化合物	产污系数法		/	0.001	/		产污系数法		/	0.001	
			镍及其化合物	产污系数法		/	0.001	/		产污系数法		/	0.001	
			颗粒物	产污系数法		501.877	150.563		颗粒物	产污系数法		5.020	1.506	
			氟化物	产污系数法		1.29	0.387	袋式除	99; 气态氟化	产污系数法		0.323	0.097	
		DA002	二噁英	产污系数法	300000	1.46E-07	4.39E-08	尘器	物 0; 固态	产污系数法	300000	7.313E-08	2.194E-08	
	中频	211002	铬及其化合物	产污系数法		1.02	0.306	(覆膜 滤袋)	氟化物	产污系数法	200000	0.01	0.003	
熔炼/	炉/精炼炉/		镍及其化合物	产污系数法		1.02	0.306	心心较力	90; 二噁英 50	产污系数法		0.01	0.003	3600
精炼	真空 脱气		颗粒物	产污系数法		/	1.585	/		产污系数法		/	1.585	
	脱气炉		氟化物	产污系数法		/	0.021	/		产污系数法		/	0.021	- - -
		无组织	二噁英	产污系数法	/	/	2.31E-09	/	/	产污系数法	/	/	2.31E-09	
			铬及其化合物	产污系数法	† ' †	/	0.003	/		产污系数法		/	0.003	
			镍及其化合物	产污系数法		· · · · · · · · · · · · · · · · · · ·	0.003	/	产	产污系数法		/	0.003	
浇铸	浇铸	无组织	颗粒物	产污系数法	/	/	0.288	车间沉	80	产污系数法	/	/	0.288	3600

	区							降						
天然	天然		颗粒物	产污系数法		10	0.128			产污系数法		10	0.128	
气燃	气加	DA003	SO_2	产污系数法	12750	14.7	0.187	/	/	产污系数法	12750	14.7	0.187	4800
烧	热炉		NOx	产污系数法		137	1.750			产污系数法		137	1.750	
天然	天然		颗粒物	产污系数法		10	0.064			产污系数法		10	0.064	
气燃	气加	DA004	SO_2	产污系数法	6396	14.7	0.094	/	/	产污系数法	6396	14.7	0.094	4800
烧	热炉		NOx	产污系数法		137	0.877			产污系数法		137	0.877	
天然	天然		颗粒物	产污系数法		10	0.064			产污系数法		10	0.064	
气燃	气加	DA005	SO_2	产污系数法	6396	14.7	0.094	/	/	产污系数法	6396	14.7	0.094	4800
烧	热炉		NOx	产污系数法		137	0.877			产污系数法		137	0.877	
天然	天然		颗粒物	产污系数法		10	0.064			产污系数法		10	0.064	
气燃	气加	DA006	SO_2	产污系数法	6396	14.7	0.094	/	/	产污系数法	6396	14.7	0.094	4800
烧	热炉		NOx	产污系数法		137	0.877			产污系数法		137	0.877	
		DA007	颗粒物	产污系数法	20000	46.7	0.933	油雾净	80	产污系数法	20000	9.3	0.187	
淬火	油淬	DA007	非甲烷总烃	产污系数法	20000	4.7	0.093	化器	0	产污系数法	20000	4.7	0.093	300
件 外	池	T: 40 40	颗粒物	产污系数法	,	/	0.400	/	/	产污系数法	,	/	0.400	300
		无组织	非甲烷总烃	产污系数法	/	/	0.04	/	/	产污系数法	/	/	0.04	
食堂	食堂	/	食堂油烟	类比法	10000	4.0	0.04	油烟净 化装置	75	类比法	10000	1.0	0.01	1800

7、非正常工况分析

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),非正常工况是指生产过程中开停车(工、炉)、设备检修、工艺设备运转异常等非正常工况下的污染物排放,以及污染物排放控制措施达不到应有效率等情况下的排放。

本环评要求建设单位开工前先启动废气治理措施,确保开工时排放的污染物也可以得到有效治理;维修时建设单位停止生产,避免非正常工况下污染物的排放。要求建设单位加强开工、维修时污染防治措施的运行维护,必须先开启污染防治措施才能开工,停工时先关停生产设施再关停污染防治设施。鉴于上述情况,本环评非正常工况排放主要考虑熔炼/精炼废气处理设施去除效率下降至0的情况。

项目非正常工况废气排放源强见表 7-29。

有组织 非正常 单次持 污染源 排放原 污染物 非正常排放速 非正常排放量 发生频次 续时间 因 率(kg/h) (kg/次) 颗粒物 50.188 25.094 氟化物 0.129 0.065 熔炼/精炼废气 1.46E-08 7.30E-09 二噁英 (DA001) 铬及其化合物 0.070 布袋破 0.139 0.070 损,除尘 镍及其化合物 0.139 0.5h3年1次 效率下 颗粒物 150.563 75.282 降至0 氟化物 0.387 0.194 熔炼/精炼废气 二噁英 4.39E-08 2.20E-08 (DA002) 铬及其化合物 0.306 0.153 镍及其化合物 0.306 0.153

表7-29 非正常工况废气排放源强

7.7 废气污染物防治措施及其可行性论证

7.7.1 废气治理措施

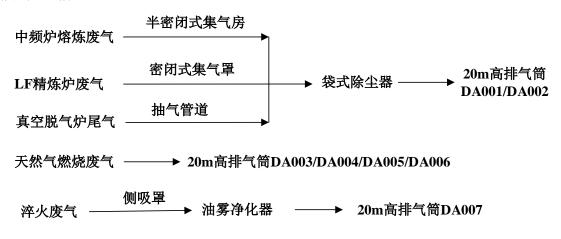


图 7-2 废气处理工艺流程图

表7-30 废气治理设施和排放口基本情况

	农产30 次(有在交通中开放户至年间允										
<u> </u>	生产单元	熔炼	熔炼	锻造、热处 理	锻造	锻造	锻造	淬火			
15	生产设施	中频炉、精炼炉、真 空脱气炉	中频炉、精炼炉、真空 脱气炉	天然气加热 炉	天然气加热炉	天然气加热炉	天然气加热炉	油淬池			
732	排污环节	中频炉熔炼、精炼炉 精炼、脱气炉脱气 (熔炼车间1)	中频炉熔炼、精炼炉精 炼、脱气炉脱气(熔炼 车间 2)	锻造、热处 理加热	锻造加热	锻造加热	锻造加热	油淬			
污	染物种类	颗粒物、氟化物、二 噁英、镍及其化合 物、铬及其化合物	颗粒物、氟化物、二噁 英、镍及其化合物、铬 及其化合物	颗粒物、 SO ₂ 、NOx	颗粒物、SO ₂ 、 NOx	颗粒物、SO ₂ 、 NOx	颗粒物、SO ₂ 、 NOx	颗粒物(油雾)、 非甲烷总烃			
扌	非放形式	有组织	有组织	有组织	有组织	有组织	有组织	有组织			
污	收集方式	熔炼车间1微负压, 中频感应炉炉体上 方设置半密闭式集 气房,精炼炉炉体上 方设密闭式集气罩, 真空脱气炉设有抽 气管道	熔炼车间 2 微负压,中 频感应炉炉体上方设 置半密闭式集气房,精 炼炉炉体上方设密闭 式集气罩,真空脱气炉 设有抽气管道	/	/	/	/	油淬池设侧吸罩			
染防	收集效率 (%)	95	75	100	100	100	100	70			
治设	处理能力 (m³/h)	150000	300000	12750	6396	6396	6396	20000			
以施概况	处理效率 (%)	颗粒物(含铬及其化合物、镍及其化合物、镍及其化合物)去除效率按99%、二噁英去除效率50%、气态氟化物去除效率为0、固态氟化物(尘氟)去除率90%。无组织排放的颗粒物80%车间内沉降。	颗粒物(含铬及其化合物、镍及其化合物、镍及其化合物)去除效率按 99%、二噁英去除效率 50%、气态氟化物去除效率为 0、固态氟化物(尘氟)去除率 90%。无组织排放的颗粒物 80%车间内沉降。	/	/	/	/	颗粒物 80%,非甲烷总烃为 0			

	处理	理工艺	袋式除尘器(覆膜滤 袋)	袋式除尘器(覆膜滤 袋)	/	/	/	/	油雾净化器
		至为可 ·技术	铁工业》(HJ 846-2017	是(属于《排污许可证申请与核发技术规范 钢 跌工业》(HJ 846-2017)中推荐的可行技术"覆 膜滤料袋式除尘器")		/	/	/	是(属于《排污 许可证申请与核 发技术规范 钢 铁工业》(HJ 846-2017)中推荐 的可行技术"过滤 式净化")
	3	类型	一般排放口	一般排放口	一般排放口	一般排放口	一般排放口	一般排放口	一般排放口
	高原	芰 (m)	≥20	≥20	≥20	≥20	≥20	≥20	≥20
	内名	至 (m)	2.0	2.6	0.6	0.4	0.4	0.4	0.8
排	温度	茰(℃)	80	80	300	300	300	300	35
放口	地理	经度	121°20′34.081″	121°20′33.734″	121°20′31.6 67″	121°20′30.876″	121°20′29.775″	121°20′27.998″	121°20′31.716″
	坐 标	纬度	29°5′17.577″	29°5′15.743″	29°5′19.123″	29°5′20.629″	29°5′21.614″	29°5′31.675″	29°5′19.171″
	4	扁号	DA001	DA002	DA003	DA004	DA005	DA006	DA007

7.7.2 废气治理措施可行性分析

1、颗粒物治理措施及其可行性论证

(1) 中频炉烟气捕集工艺可用性比选

企业委托扬州东大环保有限公司(资质及初步设计规格书见**附件9**)对项目熔炼废气处理方案进行设计,设计指标捕集率为95%,颗粒物排放浓度要求为≤10mg/m³,设计要求为满足《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269号),引用《浙江三门太和IF+LF除尘工艺初步设计规格书》内容,中频炉烟气的捕集,主要有以下几种方式,见下表7-31。

序号	名称	型号	风量 (动力能耗)	运行工况	捕集效果
1	半密闭式集气房	电炉上方设半密 闭集气房	小	良好	好
2	炉顶旋转伞型罩	在电炉上方设置 可旋转的吸气罩	大	较差	行车加料有影响
3	炉盖旋风罩	适合 10T 以下中 频炉	小	较差	差
4	屋顶罩	厂房上方设罩	很大	能耗高 很差	烟尘扩散后再捕集十 分困难,由于车间不密 闭,捕集效果很差

表7-31 中频炉烟气捕集方式一览表

随着中频炉炼钢技术趋于成熟,适应于中频炉烟气捕集装置也在不断的改进。由于环境保护的要求越来越高,要求在上马炼钢设备的同时,必须要建设较为可靠的烟气处理装置,行业内适用于中频炉烟气捕集装置可分为:炉顶旋转伞形罩(炉盖旋风罩)和半密闭式集气房。

旋转伞形罩,该罩适合小吨位中频炉并采用人工加料对环保要求不高的中频炉。

半密闭式集气房,是根据国内很多炼钢电炉烟气治理经验衍变而来的,吸气口在罩顶部,由于中频炉配置上都是一套电控配双炉壳,大型中频炉两炉壳相距7-8米,所以在吸气罩位置的设计上,顶部形成气流流线相配的弧型拱,该罩的设计排烟口正对着炉子上方应使烟尘在最短的路程、时间被吸进罩口,管道内仅吸入所需的冷风混合量,在处理风量固定的情况下,可最大限度地吸入烟尘。对同型号的中频炉来讲,反而会消耗较少的风量和全压,装机功率更合理。其次,该罩的高度设计上,底面要保证操作人员的操作空间,上面确保行车正常工作,罩体设计上采用大型型钢材框架结构,保证长期高温幅射不变形,确保系统具有良好的捕集率。

半密闭式集气房除保证了烟气捕集的作用外,还有如下效果:

- ①岗位粉尘浓度得到了改善,均低于国家标准。
- ②吸气罩具有降低电炉噪声的作用。

由此可见,采用炉顶半密闭式集气房,可以达到防尘、降温、降噪声的综合治理效果。

图 7-3 项目拟设中频炉废气集气装置实例图

(2) 炼钢车间粉尘处理工艺比选

1) 粉尘处理工艺选择

粉尘的净化方法有布袋除尘法、水喷淋除尘法、旋风除尘法、滤筒式除尘等。各种方法的主要优缺点见表7-32。

表7-32 粉尘治理工艺比较

方法	原理	优点	缺点	使用范围
布袋除尘法	利用棉、毛、合成纤维或 人造纤维等织物作为滤料 编织成滤袋,对含尘气体 进行过滤	布袋除尘器具有不 受粉尘和烟气特征 影响,处理效率高, 运行稳定,维护简 单		适用常温、高 浓度、废气量 较小的废气 治理
水喷淋除尘法	废气由风管引入净化塔经 过喷淋净化后,经除雾板 脱水除雾后由风机排入大 气	占地面积小,试用	除尘后排出的滤渣需要 处理,处理腐蚀性气体时 或使用腐蚀性喷淋水时 设备会有所损坏,不宜在 低温下运行	适用高温、酸 碱性、废气量 较小的废气 治理
旋风除尘法	将废气通入旋风内沿器壁 自圆筒体呈旋螺形向下流 动。相对密度大于气体的 粉尘甩向器壁,使粉尘靠 向下的动量和向下的重力 沿壁面落下,处理后的气 体由上方出口排入大气	维护方便,管理加单,价格便宜,使用方便,大风量时可以并联使用,耐高温,可用于回收有价值的粉尘	处理颗粒大、浓度高的粉 尘时易对入口处和椎体 部位造成伤害,除尘效率 受筒体直径限值,单独使 用效率不高	适用常温、低 浓度、废气量 较小的废气 治理
滤芯除 尘法	利用气流断面变化使粗大颗粒在惯性力作用下沉降 在灰斗;使粒径较小粉尘 沉积在滤料表面上,净化 气体由风机排入大气	净化效率是比较 高,耐高温,自动 化高使用方便,漏 风率较小	结构复杂维修困难,滤芯 已破损更换频繁	适用于粉尘 收集难、过滤 效果差、过滤 风速高、清灰 不易的粉尘

熔炼和精炼废气属于高温、高浓度粉尘,故采用布袋除尘处理工艺。

2) 处理工艺原理

布袋除尘器是一种干式滤尘装置,适用于捕集细小、干燥、非纤维性粉尘。滤袋采用纺织的滤布或非纺织的毡制成,利用纤维织物的过滤作用对含尘气体进行过滤,当含尘气体进入袋式除尘器后,颗粒大、比重大的粉尘,由于重力的作用沉降下来,落入灰斗,含有较细小粉尘的气体在通过滤料时,粉尘被阻留,使气体得到净化。处理工艺原理图见**图 7.2-3**。

根据袋式除尘器原理分析可知,对袋式除尘器效率起决定性作用的是滤袋的选择。为了 克服普通滤料初期低效率、后期高耗能、滤料更换周期高等缺点,同时达到钢铁行业超低排 放要求,本项目布袋拟采取高效覆膜滤料。

覆膜滤料是在普通滤料表面复合一层聚四氟乙烯(PTFE)薄膜而形成的一种新型滤料。这层薄膜相当于起到了"一次粉尘层"的作用,物料交换是在膜表面进行的,使用之初就能进行有效的过滤。薄膜特有的立体网状结构,使粉尘无法穿过无空隙堵塞之虞。这种过滤方法称为表面过滤。薄膜滤料由于薄膜不粘性、摩擦系数小,故粉饼会自动脱落,确保了设备阻力长期稳定,因此充分发挥了袋式除尘器优越性。根据《排放源统计调查产排污核算方法和系数手册》(2021年),覆膜滤料布袋除尘器治理电炉烟气的处理效率可达 99.6%。

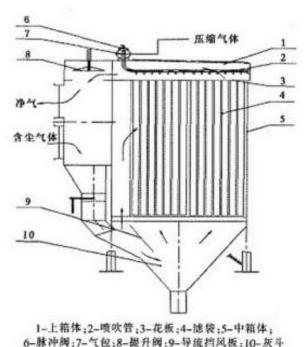


图 7-4 布袋除尘器处理工艺原理图

(3) 处理工艺可行性分析

参照《排污许可证申请与核发技术规范 钢铁工业》(HJ 846-2017)和《排污许可证申请与核发技术规范 金属铸造工业》(HJ 1115-2020)判定项目污染防治技术是否可行,具体见表 7-33。

表7-33 粉尘污染防治技术可行性判定表

		规范要求		本项	目情况	是否为
生产设施	污染因子	可行技术-执行特别排放限值 排污单位	来源	生产设施	治理工艺	可行技 术
中频感应炉	颗粒物(含 铬及其化 合物、镍及 其化合物)	设置集气罩,连接袋式除尘器进行集气罩,连接袋式除尘器进行(布袋需覆膜或控制风量),除尘效率可达99.5%以上,排放浓度可达浓度可达 20 mg/m³以下。铅基及铜合金熔炼采用布袋除尘器也有很好的效果,去除率可达 99%以上。		中频炉、精炼炉	半密闭集 气房+袋式 除尘器	是

由上表可知,本项目熔炼、精炼工序采用规范推荐的可行技术,工艺可行。

2、氟化物废气治理措施及其可行性论证

炼钢烟气中的氟化物主要来源于添加的萤石,主要成分为 CaF_2 。大量实验研究证明, CaF_2 的高温分解不是由于 CaF_2 的挥发,而是发生了水解反应。绝对干燥的空气和氧气中, CaF_2 高温不分解;饱和空气中, CaF_2 的水解起始温度大致为 $820~840^{\circ}$ C。低温阶段($850~1200^{\circ}$ C), CaF_2 水解率随反应时间的延长而缓慢增加;高温阶段(1200° C以上)其水解率随反应时间的延长而显著增加。

本项目精炼炉中添加生石灰提高炉渣碱度,但提高碱度往往会使炉渣变稠,因此需添加 萤石用于稀释炉渣而不降低滤渣碱度,生石灰及萤石用量较少。生产过程中精炼炉内不含水 份,理论上 CaF_2 不会水解生成 HF。在烟道内,由于有空气的进入,会有少量的 CaF_2 发生 水解生成 HF 类气态氟化物。由于烟气中含有大量的炼钢烟尘、属高碱性,且含有一定数量 的 CaO (3~22%);而 CaO 脱氟效果好,很容易与 HF 类气态氟化物反应生产 CaF_2 。熔炼 烟气中的氟化物主要以 CaF_2 形式存在,容易被高效除尘器去除。因此,对于熔炼/精炼废气中的氟化物,通过控制颗粒物排放就可以控制氟化物的排放。

3、二噁英废气治理措施及其可行性论证

由于原料废钢的来源复杂性和治炼环境的特性,电炉熔炼烟气中易产生二噁英。现行国家标准《炼钢工业大气污染物排放标准》(GB28664-2012)中对于二噁英的排放有着严格规定,要求二噁英排放小于 $0.5ng-TEQ/m^3$ 。

中频炉炼钢中二噁英生成机理:废钢是中频炉炼钢的原料,而一般废钢中都会含有塑料及油脂等含氯有机物,当将这类废钢装入中频炉内进行废钢预热时,就会产生含二噁英的烟气。中频炉烟气中二噁英的产生量与废钢预热温度、废钢来源及除尘方式等有密切关系。研究表明,中频炉炼钢中的二噁英主要以2种方式生成:

(1) 经由前驱体化合反应生成。由于废钢中含有含氯的前驱体,在废钢预热过程中 (300~700℃)可以通过重排生成二噁英。同时废钢中的 Cu、Fe、Ni 等氧化物及飞灰等对 前驱物的重排生成二噁英的反应具有催化作用。

(2) 苯环结构的高分子化合物热分解,主要发生在废钢预热阶段。

研究表明,当氯含量相同时,废气中氯化有机物和二噁英含量在同一数量级;当带塑料和含油的废钢中无氯时,中频炉废气中二噁英含量会明显降低。

根据二噁英的生成机理及项目情况,本项目拟从以下几个方面控制二噁英控的排放。

①源头控制

本项目采用的废钢以废低碳钢、废铬钼钢、废模具钢等为主,包含少量加工边角料、废品、冒头等;不使用普通废杂钢。企业对进厂原料进行严格控制,避免含油脂、油漆、涂料、塑料等含氯有机物的废钢混入。

②末端治理

根据《钢铁行业炼钢工艺污染防治最佳可行技术指南(试行)》,利用袋式除尘器的高效过滤作用,在除尘的同时可将部分二噁英截留在粉尘中。项目中频炉捕集方式主要采用半密闭集气房,最大限度地捕集中频炉烟气,减少二噁英的无组织排放,并采用高效袋式除尘器净化,在除尘的同时将部分二噁英截留在粉尘中。

采取以上措施后可有效控制二噁英排放浓度,满足《炼钢工业大气污染物排放标准》 (GB28664-2012)相关标准。

7.7.3 项目废气达标性分析及无组织废气控制要求

1、废气有组织排放达标性分析

项目废气经相应废气治理措施处理后,有组织废气排放情况见表7-34。

废气 排放浓度(mg/m³) 排放速率(kg/h) 排气 本项目 本项目 标准 标准 倍 种类 污染因子 排放速 标准值 排放浓 值 率 度 浙环函 颗粒物 0.502 10 3.347 [2019]269号 氟化物 0.032 5.0 0.213 GB28664-201 熔炼、 7.314E-0 0.5ng-TEQ/m 4.876E-0 DA0 二噁英 精炼废 8 01 气 铬及其化合 GB28666-201 / 3.0 0.0015 0.01 镍及其化合 GB16297-199 2.6 4.3 物 0.0015 0.01 6 浙环函 颗粒物 / 1.506 10 5.020 [2019]269 号 氟化物 0.097 熔炼、 / 5.0 0.323 DA0 GB28664-201 精炼废 2.194E-0 0.5ng-TEQ/m 7.313E-0 02 二噁英 气 铬及其化合 GB28666-201 3.0 0.003 0.01 物 2

表7-34 有组织废气排放达标性分析

		镍及其化合	2.6		4.3		GB16297-199
		物		0.003		0.01	6
DA0	天然气	颗粒物	/	0.128	10	10	
03	燃烧废	SO_2	/	0.187	50	14.7	
03	气	NOx	/	1.750	200	137	
DA0	天然气	颗粒物	/	0.064	10	10	
04	燃烧废	SO_2	/	0.094	50	14.7	GB9078-1996
04	气	NOx	/	0.877	200	137	、同时满足环
DAO	天然气	颗粒物	/	0.064	10	10	大气[2019]56
DA0 05	燃烧废	SO_2	/	0.094	50	14.7	号
03	气	NOx	/	0.877	200	137	
DAO	天然气	颗粒物	/	0.064	10	10	
DA0	燃烧废	SO_2	/	0.094	50	14.7	
06	气	NOx	/	0.877	200	137	
DA0	淬火废	颗粒物	5.9	0.187	100	9.3	GB16297-199
07	气	非甲烷总烃	17	0.093	120	4.7	6

由上表可知,本项目各工艺废气经收集处理后,有组织废气均能满足相应的排放标准。

2、无组织废气控制要求

本项目无组织排放的废气主要为集气罩未收集的无组织颗粒物废气,为降低无组织颗粒物对周围环境的影响,拟采取如下措施:

- ①项目生产时门窗在非必要时均进行关闭,做到密闭车间,并且设置的门窗、盖板、检修口等配套设施在非必要时应关闭。
- ②全面加强物料储存、输送及生产工艺过程无组织排放控制,在保障生产安全的前提下,采取密闭、封闭等有效措施,有效提高废气收集率,产尘点及车间不得有可见烟粉尘外逸。
- ③原料堆场密闭,物料厂区内汽车运输部分应使用封闭车厢或苦盖严密,装卸车时应采取加湿等抑尘措施、物料输送落料点应配备集气罩和除尘设施,或采取喷雾等抑尘措施、场出口应设置车轮和车身清洗设施。

通过采取以上无组织排放控制措施,无组织废气能够达标排放。

7.8 大气环境影响预测

7.8.1 气象数据

为了了解项目所在地的污染气象特征,本项目收集了三门县 2023 年的全年气象数据。 具体如下:

(1) 年平均风速的月变化

年平均风速的月变化情况见表 7-35 和图 7-5。

表7-35 年平均风速的月变化

	月份	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10月	11月	12 月
风退	₹ (m/s)	1.9	2.04	1.89	1.89	1.95	1.62	1.78	1.77	1.67	1.72	1.82	1.73



图 7-5 近年平均风速的月变化曲线

(2) 年平均温度月变化

年平均温度月变化情况见表 7-36 和图 7-6。

表7-36 年平均温度的月变化

ĺ	月份	1	2	3	4	5	6	7	8	9	10	11	12
ſ	温度(℃)	7.6	8.8	12.8	17.4	21.6	25.9	29.5	28.1	26.7	20.3	14.5	8.3

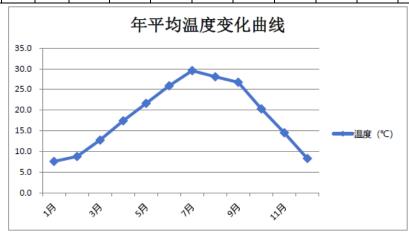


图 7-6 年平均温度的月变化曲线

(3) 季小时平均风速的月变化

季小时平均风速日变化见表 7-37 和图 7-7。

表 7-37 季小时平均风速日变化(单位: m/s)

小时风速	1	2	3	4	5	6	7	8	9	10	11	12
春季	1.3	1.2	1.2	1.3	1.3	1.2	1.2	1.2	1.5	1.9	2.3	2.6
夏季	1.2	1.2	1.3	1.2	1.3	1.2	1.0	1.2	1.6	2.0	2.2	2.4
秋季	1.4	1.3	1.4	1.5	1.5	1.5	1.4	1.5	1.6	1.9	2.0	2.4
冬季	1.4	1.6	1.6	1.6	1.6	1.7	1.7	1.8	1.8	1.8	2.0	2.2
小时风速	13	14	15	16	17	18	19	20	21	22	23	24
春季	2.9	3.1	3.3	3.1	3.0	2.5	2.2	1.6	1.6	1.5	1.4	1.4
夏季	2.6	2.6	2.7	2.6	2.4	2.0	1.8	1.6	1.4	1.2	1.2	1.2
秋季	2.4	2.5	2.6	2.5	2.2	1.9	1.5	1.4	1.4	1.3	1.3	1.4
冬季	2.5	2.5	2.7	2.8	2.5	2.1	1.9	1.7	1.6	1.4	1.4	1.4

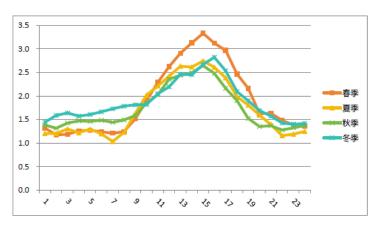


图 7-7 季小时平均风速的日变化曲线

(4) 风向风频

年均风频的月变化见表 7-38, 年均风频的季变化及年均风频见表 7-39, 风向玫瑰图见图 7-8, 风速玫瑰图见图 7-9。

表 7-38 年均风频的月变化

风频(%) 风向	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	С
一月	24.6	24.7	4.6	1.9	0.7	0.4	0.4	2.0	2.4	1.1	1.9	1.3	2.3	5.5	4.2	5.8	16.3
二月	22.8	29.3	12.4	2.4	0.9	0.0	0.6	1.6	3.1	1.5	0.3	0.4	0.6	1.5	1.5	4.3	16.8
三月	17.9	33.3	9.0	2.4	1.2	0.5	1.2	4.2	5.0	1.7	0.3	0.7	0.7	1.2	1.1	3.5	16.1
四月	14.9	27.8	11.8	2.6	2.1	1.0	1.9	3.5	4.2	3.2	1.5	1.3	1.0	2.5	2.4	2.9	15.6
五月	11.7	30.5	8.1	2.6	2.8	1.3	2.8	4.2	4.8	2.8	2.0	0.9	1.1	2.0	3.4	3.4	15.6
六月	12.2	26.4	8.9	3.6	2.1	0.7	2.8	3.1	3.9	4.0	3.1	2.8	1.8	1.3	1.4	3.5	18.6
七月	7.9	24.5	5.0	2.0	2.2	2.4	6.0	6.2	7.9	5.6	3.8	2.6	1.5	1.6	0.9	1.9	18.0
八月	15.7	24.7	7.9	4.3	1.7	3.4	4.8	2.7	3.2	2.0	0.9	0.9	1.5	2.6	1.6	6.2	15.7
九月	14.0	29.9	13.5	6.3	3.2	1.9	2.6	3.5	2.1	1.5	0.7	0.8	1.0	1.0	0.8	2.1	15.1
十月	23.1	30.9	5.9	3.1	1.2	1.6	0.9	3.4	2.7	1.3	0.3	0.4	1.9	1.2	2.3	5.8	14.0
十一月	24.7	25.1	4.3	0.7	0.8	0.8	1.0	3.8	3.1	1.0	0.8	1.0	1.1	3.9	6.0	7.2	14.7
十二月	24.6	21.1	3.9	0.7	0.1	0.4	0.8	1.9	3.8	0.9	2.4	1.7	2.3	5.9	7.8	9.8	11.7

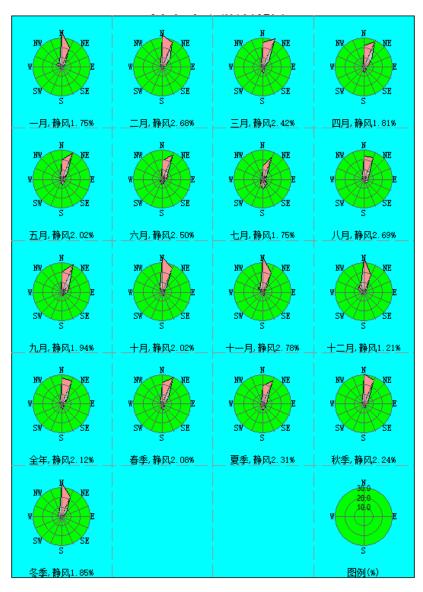


图 7-8 风向玫瑰图

表 7-39 年均风频的季变化及年均风频

风向风	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	C
频(%)	北				东				南				西				
春季	14.8	30.6	9.6	2.5	2.0	1.0	2.0	3.9	4.7	2.6	1.3	1.0	0.9	1.9	2.3	3.3	15.8
夏季	12.0	25.2	7.2	3.3	2.0	2.2	4.6	4.0	5.0	3.9	2.6	2.1	1.6	1.8	1.3	3.8	17.4
秋季	20.7	28.7	7.9	3.3	1.7	1.5	1.5	3.5	2.6	1.3	0.6	0.7	1.3	2.0	3.0	5.0	14.6
冬季	24.0	24.9	6.8	1.6	0.6	0.3	0.6	1.9	3.1	1.2	1.6	1.2	1.8	4.4	4.6	6.7	14.9
年平均	17.8	27.3	7.9	2.7	1.6	1.2	2.2	3.3	3.9	2.2	1.5	1.2	1.4	2.5	2.8	4.7	15.7

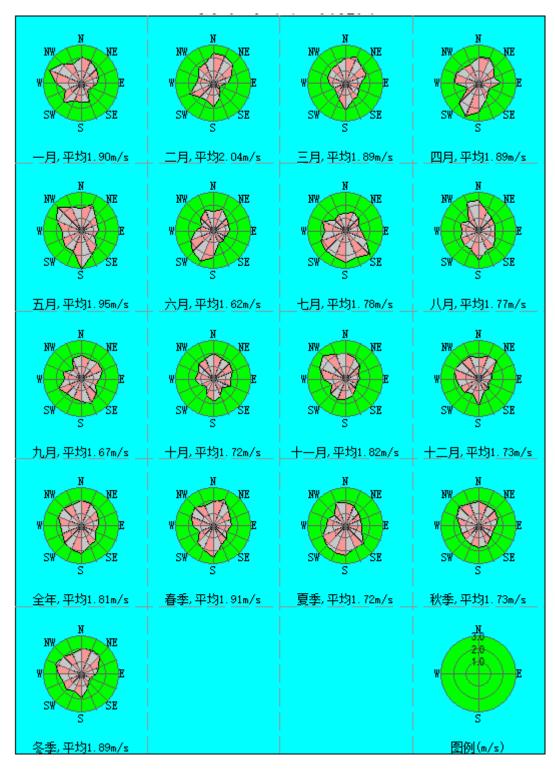


图 7-9 风速玫瑰图

7.8.2 气象数据大气评价等级估算

1、估算模型

项目估算模型采用《环境影响评价技术导则 大气环境》(HJ2.2-2018)中推荐的 AERSCREEN。

2、评价因子和评价标准筛选

项目评价因子和评价标准见表 7-40。

表7-40 评价因子和评价标准表

评价因子	平均时段	标准值(mg/m³)	标准来源
TSP	1h 平均(折算)	0.9	// T 接 克 左 氏 是 上 谢 \\ CD 2005 2012 \\
PM_{10}	1h 平均(折算)	0.45	《环境空气质量标准》GB 3095-2012)
PM _{2.5}	1h 平均(折算)	0.225	二级标准及修改单; 其中 TSP、PM ₁₀ 、 PM _{2.5} 1h 平均标准值根据《环境影响评
SO_2	1h 平均	0.5	PM _{2.5} 111
NO_x	1h 平均	0.25	相关说明折算
氟化物	1h 平均	0.02	相大 姚·为 扒 异
二噁英	1h 平均	3.6 pg-TEQ /m 3	参照执行日本标准
铬及其化合物	1h 平均	0.0015	苏联工作环境空气和居民区大气中有 害无机物的最大允许浓度度
镍及其化合物	1h 平均	0.003	大气污染物综合排放标准详解
非甲烷总烃	一次值	2	八 17朱初综古排放你任计胜

3、估算模型参数

表7-41 估算模型参数表

参数		
参	数	取值
城市/农村选项	城市/农村	城市
规印/农们起坝	人口数(城市选项时)	43.8 万
最高环境	竟温度/°C	41.3
最低环境	竟温度/℃	-6.0
土地利	用类型	城市
区域湿	度条件	潮湿
是否考虑地形	考虑地形	☑是 □否
走百 写 尼 地 的	地形数据分辨率/m	90
	考虑岸线熏烟	□是 ☑否
是否考虑岸线熏烟	岸线距离/km	/
	岸线方向/°	/

4、估算参数

根据工程分析,项目正常工况下点源参数见下表 7-42,面源参数见下表 7-43。

表7-42 本项目点源参数表(新增污染源)

	1			W1-	, , , ,	1 MW 2 XX	,, 17.77	1	I			
		排气筒底	部中心坐标	排气筒底部	排气筒	排气筒出	烟气量	烟气温	年排放	排放	污染源	
编号	名称	X	Y	海拔高度/m	高度/m	口内径/m	/(m ³ /h)	度/℃	小时数	工况	污染物	排放速率/
		Λ	1	码汉间/文/III	刊/文/III	口 [] 7王/III	/(111 /11)	/文/ C	/h	エル	77条70	(kg/h)
											PM_{10}	0.502
											$PM_{2.5}$	0.251
DA001	熔炼、精	63	30	37	20	2.0	150000	90	2600	正常	氟化物	0.032
DAUUI	炼废气	0.5	30	37	20	2.0	150000	80	3600	正市	二噁英	7.314E-09
											铬及其化合物	0.0015
											镍及其化合物	0.0015
											PM_{10}	1.506
											$PM_{2.5}$	0.753
DA002	熔炼、精	54	-30	38	20	2.6	300000	80	2600	正常	氟化物	0.097
DA002	炼废气	54	-30	38	20	2.0	300000	80	3600	上五市	二噁英	2.194E-08
											铬及其化合物	0.003
											镍及其化合物	0.003
	工品层										PM_{10}	0.128
DA003	天然气 燃烧废	0	115	30	20	0.6	12750	300	4800	正常	PM _{2.5}	0.064
DAUUS	然院及 气	0	113	30	20	0.0	12/30	300	4800	正市	SO_2	0.187
	(NOx	1.750
	工品层										PM_{10}	0.064
DA004	天然气 燃烧废	39	90	32	20	0.4	6396	300	4800	正常	$PM_{2.5}$	0.032
DA004	然院及 气	39	90	32	20	0.4	0390	300	4800	正市	SO_2	0.094
	,										NOx	0.877
	工量										PM_{10}	0.064
DA 005	天然气	5.6	53	33	20	0.4	6206	200	4900	正常	PM _{2.5}	0.032
DA005	燃烧废 气	56	33	33	20	0.4	6396	300	4800	上上市	SO_2	0.094
	,										NOx	0.877

	工品层										PM_{10}	0.064
DA006	天然气 燃烧废	-51	383	22	20	0.4	6396	300	4800	正常	$PM_{2.5}$	0.032
DAUUU	然就及 与	-31	363	22	20	0.4	0390	300	4600	11. 市	SO_2	0.094
	J										NOx	0.877
	淬火废										PM_{10}	0.187
DA007	符入版 与	12	121	30	20	0.8	20000	35	300	正常	$PM_{2.5}$	0.094
	,										非甲烷总烃	0.093

表7-43 本项目面源参数表(新增污染源)

//亡			中心标	面源海	面源	去海岸	与正北	面源有	年排放	北北工			污	染物排放	女速率/(kg/	/h)		
编号	名称	X	Y	拔高度 /m	长度 /m	面源宽 度/m	向夹角 /。	效排放 高度/m	小时数 /h	排放工 况	TSP	PM ₁₀	PM _{2.5}	氟化 物	二噁英	铬及其化合物	镍及 其化 合物	非甲 烷总 烃
1	熔炼车 间 1/1F	63	26	37	120	36	15	8	3600	正常	0.528	0.264	0.132	0.007	7.70E-10	0.001	0.001	/
2	熔炼车 间 2/1F	54	-30	38	150	45	15	8	3600	正常	1.585	0.793	0.396	0.021	2.31E-09	0.003	0.003	/
3	锻造车 间 1/1F	-40	149	30	116	102	0	8	300	正常	0.400	0.200	0.100	/	/	/	/	0.04

5、估算模型计算结果

表7-44 项目污染源估算模型计算结果

		衣7-4		1开伏尘 11 升		T	
污	染源名称	污染物名称	下风向最大浓度	标准	最大地面浓度	D _{10%} 最远距	评价
17	不你口你		(mg/m^3)	(mg/m^3)	占标率〔%〕	离(m)	等级
		PM_{10}	5.16E-03	0.45	1.15	0	二级
		PM _{2.5}	2.58E-03	0.225	1.15	0	二级
	DA001	氟化物	3.54E-04	0.02	1.77	0	二级
	DA001	二噁英	7.52E-11	3.6E-09	2.09	0	二级
		铬及其化合物	1.66E-05	0.0015	1.11	0	二级
		镍及其化合物	1.66E-05	0.003	0.55	0	三级
		PM_{10}	1.03E-02	0.45	2.29	0	二级
		$PM_{2.5}$	5.16E-03	0.225	2.29	0	二级
	DA002	氟化物	6.08E-04	0.02	3.04	0	二级
	DA002	二噁英	1.50E-10	3.6E-09	4.17	0	二级
		铬及其化合物	1.88E-05	0.0015	1.25	0	二级
		镍及其化合物	1.88E-05	0.003	0.63	0	三级
		PM_{10}	1.03E-03	0.45	0.23	0	三级
	D 4 0 0 2	$PM_{2.5}$	5.16E-04	0.225	0.23	0	三级
	DA003	SO_2	1.51 E-03	0.5	0.30	0	三级
点源		NOx	1.41E-02	0.25	5.65	0	二级
		PM_{10}	9.63E-04	0.45	0.21	0	三级
	D 4 0 0 4	PM _{2.5}	4.82E-04	0.225	0.21	0	三级
	DA004	SO_2	1.17E-03	0.5	0.18	0	三级
		NOx	1.09E-02	0.25	4.38	0	二级
		PM_{10}	1.13E-03	0.45	0.25	0	三级
	D 4 005	PM _{2.5}	5.64E-04	0.225	0.25	0	三级
	DA005	SO_2	1.66E-03	0.5	0.33	0	三级
		NOx	1.55E-02	0.25	6.18	0	二级
		PM_{10}	1.59E-03	0.45	0.35	0	三级
	D 1 000	PM _{2.5}	7.95E-04	0.225	0.35	0	三级
	DA006	SO_2	2.34E-03	0.5	0.47	0	三级
		NOx	2.18E-02	0.25	8.72	0	二级
		PM_{10}	1.83 E-02	0.45	4.06	0	二级
	DA007	PM _{2.5}	9.18 E-03	0.225	4.08	0	二级
		非甲烷总烃	9.03 E-03	2	0.45	0	三级
		TSP	2.26E-01	0.9	25.13	150	一级
		PM_{10}	1.13E-01	0.45	25.13	150	一级
	版社士白	PM _{2.5}	5.66E-02	0.225	25.13	150	一级
	熔炼车间	氟化物	3.00E-03	0.02	14.99	100	一级
	1/1F	二噁英	3.30E-10	3.6E-09	9.16	0	二级
<u> </u>		铬及其化合物	4.28E-04	0.0015	28.56	150	一级
面源		镍及其化合物	4.28E-04	0.003	14.28	75	一级
		TSP	5.62E-01	0.9	62.46	325	一级
	123 14 4 3→	PM_{10}	2.81E-01	0.45	62.50	325	一级
	熔炼车间	PM _{2.5}	1.40E-01	0.225	62.50	325	一级
	2/1F	氟化物	7.45E-03	0.02	37.24	225	一级
		二噁英	8.19E-10	3.6E-09	22.76	150	一级

	铬及其化合物	1.06E-03	0.0015	70.95	350	一级
	镍及其化合物	1.06E-03	0.003	35.48	225	一级
	TSP	1.61E-01	0.9	17.88	100	一级
锻造车间	PM_{10}	8.04E-02	0.45	17.88	100	一级
1/1F	$PM_{2.5}$	4.02E-02	0.225	17.88	100	一级
	非甲烷总烃	1.61 E-02	2.0	0.8	0	三级

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018),确定大气环境影响评价等级为一级。

7.8.3 进一步预测内容

1、预测因子

本项目评价等级为一级,应采用进一步预测模型开展大气环境影响预测与评价。本次预测选取 PM_{10} 、 $PM_{2.5}$ 、TSP、氟化物、二噁英、铬及其化合物、镍及其化合物、非甲烷总烃作为进一步预测评价因子。

2、预测范围

以项目厂址为中心区域,外延 2.5km 的矩形区域。

3、预测周期

选取评价基准年作为预测周期,预测时段取连续1年。

4、预测模型

本次评价大气预测分析采用《环境影响评价技术导则大气环境》(HJ2.2-2018)中所推荐的 AERMOD 预测模式(V2.6.461 版本),模式系统包括 AERMOD(大气扩散模型)、AERMET (气象数据预处理器) 和 AERMAP (地形数据预处理器)。

5、预测点设置

根据 AERSCREEN 计算结果,本次大气环境影响预测计算点为 5.0km×5.0km 的网格点、预测范围内的主要环境空气保护目标及区域最大地面浓度点。网格间距根据 HJ2.2-2018 要求: 网格点间距可采用等间距或近密远疏法进行设置,距离源中心 5km 的网格间距不超过100m。本次预测网格采用等间距设置,间距取 100m。

6、预测内容和评价要求

项目位于环境空气质量达标区,其预测内容和评价要求见表 7-45。

评价对 污染源排放 污染源 预测内容 评价内容 象 形式 短期浓度 新增污染源 正常排放 最大浓度占标率 长期浓度 达标区 新增污染源+区域 短期浓度 叠加环境质量现状浓度后的保证率 评价项 削减污染源+其他 日平均质量浓度和年平均质量浓度 正常排放 目 长期浓度 的达标情况, 或短期浓度的达标情况 在建、拟建污染源 新增污染源 非正常排放 | 1h 平均质量浓度 最大浓度占标率 大气环 境防护 新增污染源 正常排放 短期浓度 大气环境防护距离 距离

表7-45 预测内容和评价要求

7、污染源调查

(1)本项目新增污染源参数见表 7-42 和表 7-43;

(2)根据现场调查并结合当地生态环境管理部门项目审批情况,评价范围已批复的在建、拟建项目工业污染源主要为台州路而得电力器材有限公司、 臻久科技(浙江)有限公司、三门星淼橡塑科技有限公司、浙江腾奇散热器科技有限公司、浙江威帝玛电气有限公司、浙江至尚装饰材料有限公司、浙 江劲马轮胎有限公司项目,根据已批复的在建、拟建项目环评报告,详见表 7-46 和表 7-47。

(3)非正常工况下污染源参数见表7-48。

表7-46 其他在建、拟建污染源点源参数表

人业互称	排气筒底部中 心坐标 名称		/KV HI		排气筒高	排气筒出				排放工					
企业名称	名 你	X	Y	拔高度 /m	度/m	口内径/m	(m^3/h)	度/℃	小时数/h	况	PM_{10}	PM _{2.5}	SO_2	NO ₂	非甲烷 总烃
臻久科技(浙 江)有限公司	DA001	-1579	-35	29	15	1.2	50000	40	7200	正常	0.011	0.006	/	/	0.0743
	DA001	-2014	-512	26	15	0.6	12000	20	3000	正常	0.117	0.059	/	/	/
台州路而得电	DA002	-1945	-571	25	15	0.5	8000	20	3000	正常	0.074	0.037	/	/	/
力器材有限公	DA003	-2051	-512	26	15	0.9	30000	20	3000	正常	0.288	0.144	/	/	/
司	DA004	-2024	-560	24	15	1.2	60000	20	3000	正常	0.633	0.317	/	/	/
	DA005	-2114	-677	25	15	0.4	4500	60	3000	正常	0.014	0.007	/	/	0.027
	DA001	-1085	-83	20	15	0.4	3000	25	600	正常	0.013	0.007	/	/	/
一口目水拖卸	DA002	-1090	-80	20	15	1.0	32000	30	2400	正常	0.028	0.014	/	/	0.038
三门星淼橡塑科技有限公司	DA003	-1095	-80	20	15	0.8	20000	30	2400	正常	/	/	/	/	0.022
	DA004	-1095	-85	20	15	0.4	5000	30	2400	正常	/	/	/	/	0.0095
	DA005	-1100	-85	20	8	0.15	898	60	2400	正常	0.009	0.005	0.017	0.045	/

	DA001	-2141	-661	25	20	1.5	32000	25	4800	正常	0.664	0.332	/	/	/
	DA002	-2161	-640	25	20	1.8	55000	25	4800	正常	/	/	/	/	0.001
N - N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	DA003	-2093	-650	24	20	1.5	40000	25	7200	正常	0.214	0.107	/	/	/
浙江腾奇散热	DA004	-2083	-640	24	20	0.5	3500	80	7200	正常	0.003	0.002	0.002	0.021	0.018
器科技有限公司	DA005	-2114	-677	24	20	3.0	170000	100	7200	正常	0.205	0.103	0.006	0.834	0.679
-7	DA006	-2061	-703	24	20	0.1	128	80	4800	正常	0.003	0.002	0.002	0.018	/
	DA007	-2088	-629	24	20	0.1	94	80	4800	正常	0.002	0.001	0.002	0.003	/
	DA008	-2108	-635	24	15	0.6	5000	25	7200	正常	/	/	/	/	0.013
	DA001	-1909	-583	25	15	0.4	7000	25	2700	正常	0.065	0.033	/	/	/
Mr Ver elle jet var de	DA002	-1910	-608	25	15	0.5	12000	25	2700	正常	0.146	0.073	/	/	/
浙江威帝玛电 气有限公司	DA003	-1951	-583	25	15	0.5	12000	25	2700	正常	0.150	0.075	/	/	/
(有版公司	DA004	-1943	-625	25	15	0.3	5015	45	2700	正常	/	/	0.005	0.222	0.011
	DA005	-1935	-625	25	15	0.8	25000	30	2700	正常	0.023	0.012	/	/	0.232
	DA001	-576	-86	37	23	0.3	2500	25	2400	正常	0.25	0.125	/	/	/
江至尚装饰材	DA002	-584	-128	37	23	0.3	2000	25	2400	正常	0.036	0.018	/	/	/
料有限公司	DA003	-576	-153	37	23	0.2	1000	50	2400	正常	/	/	/	/	0.003
	DA004	-551	-153	37	23	0.1	111	50	2400	正常	0.002	0.001	0.004	0.019	/
浙江劲马轮胎	DA001	-1322	287	25	15	1.2	30000	25	7200	正常	/	/	/	/	0.043
有限公司	DA002	-1330	270	25	15	0.2	540	100	7200	正常	0.005	0.003	/	/	/

表7-47 其他在建、拟建污染源面源参数表

			面源起	点坐标/m	五海海井	五海区	元派	-	面源有效	年排放小时		污染	物排放逐	吏率/(kg/h
企.	业名称	名称	X	Y	面源海拔 高度/m	囲源长 度/m	面源宽 度/m	与正北向 夹角/°	排放高度 /m	年排放小的 数/h	排放工况	PM ₁₀	PM _{2.5}	TSP	非甲烷 总烃
臻久科 有	技(浙江) 限公司	生产车间	-1579	-35	36	54	30	-19	4	7200	正常	/	/	/	0.021

台州路而得电力 器材有限公司	生产车间	-2019	-587	26	200	50	133	12	3000	正常	0.075	0.038	0.751	0.096
三门星淼橡塑	1#厂房	-1055	-80	24	80	40	200	3	2400	正常	/	/	/	0.0229
科技有限公司	2#厂房	-1100	-85	24	57	42	200	3	4800	正常	/	/	/	0.017
浙江腾奇散热器	焊接厂房	-2146	-682	25	128	48	33	17	4800	正常	0.003	0.002	0.033	/
科技有限公司	涂装厂房	-2114	-666	25	112	48	33	12	7200	正常	0.023	0.012	0.225	0.133
浙江威帝玛电气 有限公司	生产车间	-1927	-633	25	60	30	-40	3	2700	正常	0.018	0.009	0.179	0.027
浙江至尚装饰材 料有限公司	生产车间	-592	-111	37	60	45	45	3	2400	正常	0.013	0.007	0.134	0.0003
浙江劲马轮胎有 限公司	生产车间	-1388	212	25	30	13	30	6	7200	正常	/	/	/	0.043

表7-48 大气污染物非正常工况参数一览

		排气筒底	部中心坐标	排气筒底	排气筒	排气筒	烟气量	烟气温	年排放	排放	污染》	原
编号	名称	X	Y	部海拔高 度/m	高度 /m	出口内 径/ m	/(m ³ /h)	ළ/℃	小时数 /h	工况	污染物	排放速率 /(kg/h)
											PM_{10}	50.188
											$PM_{2.5}$	25.094
DA001	熔炼、精炼	136	-131	37	20	2.0	150000	80	3600	正常	氟化物	0.129
DAOOI	废气	130	-131	37	20	2.0	130000	80	3000	工中	二噁英	1.64E-08
											铬及其化合物	0.139
											镍及其化合物	0.139
											PM_{10}	150.563
											$PM_{2.5}$	75.282
DA002	熔炼、精炼	143	-178	38	20	2.6	300000	80	3600	正常	氟化物	0.387
DA002	废气	143	-176	36	20	2.0	300000	80	3000	工中	二噁英	4.39E-08
											铬及其化合物	0.306
											镍及其化合物	0.306

7.8.3 预测结果

1、新增污染源最大浓度占标率

表7-49 评价区域各污染物排放地面最大浓度贡献值预测结果

污染							
物物	预测点	平均时段	出现时间	最大贡献值(mg/m³)	标准(mg/m³)	占标率%	是否超标
	349 d c k d	日平均	20230705	3.72E-12	1.20E-09	0.31	达标
	湘山村	年平均	平均值	2.70E-13	6.00E-10	0.05	达标
	+4 m 4+	日平均	20230819	3.44E-12	1.20E-09	0.29	达标
	城西村	年平均	平均值/	2.05E-13	6.00E-10	0.03	达标
	47 54 44	日平均	20230713	4.19E-12	1.20E-09	0.35	达标
	松门村	年平均	平均值	3.07E-13	6.00E-10	0.05	达标
	<u> </u>	日平均	20230714	8.08E-12	1.20E-09	0.67	达标
	金叶村	年平均	平均值	4.71E-13	6.00E-10	0.08	达标
	} X ₹п } }	日平均	20230713	6.52E-12	1.20E-09	0.54	达标
	祥和村	年平均	平均值	5.11E-13	6.00E-10	0.09	达标
	ておせ	日平均	20230713	7.39E-12	1.20E-09	0.62	达标
	下坑村	年平均	平均值	7.91E-13	6.00E-10	0.13	达标
	나무꾸	日平均	20230411	1.01E-11	1.20E-09	0.84	达标
	上坑村	年平均	平均值	7.21E-13	6.00E-10	0.12	达标
	广 初 壮	日平均	20230203	4.92E-12	1.20E-09	0.41	达标
	后郭村	年平均	平均值	5.52E-13	6.00E-10	0.09	达标
	台河村	日平均	20231002	6.18E-12	1.20E-09	0.52	达标
二噁	前郭村	年平均	平均值	6.22E-13	6.00E-10	0.10	达标
英	港溪村	日平均	20231003	7.21E-12	1.20E-09	0.60	达标
7	他侠们	年平均	平均值	7.80E-13	6.00E-10	0.13	达标
	溪东村	日平均	20230203	6.05E-12	1.20E-09	0.50	达标
	关 亦们	年平均	平均值	4.35E-13	6.00E-10	0.07	达标
	下谢村	日平均	20230422	6.12E-12	1.20E-09	0.51	达标
	1. 4014.1	年平均	平均值	7.50E-13	6.00E-10	0.13	达标
	小坑村	日平均	20230813	6.05E-12	1.20E-09	0.50	达标
	イ・タレイ リ	年平均	平均值	3.21E-13	6.00E-10	0.05	达标
	石头岙村	日平均	20231223	7.81E-12	1.20E-09	0.65	达标
	有大征们	年平均	平均值	5.53E-13	6.00E-10	0.09	达标
	下朱路村	日平均	20231112	7.12E-12	1.20E-09	0.59	达标
	广水町竹	年平均	平均值	6.55E-13	6.00E-10	0.11	达标
	马村	日平均	20231204	7.10E-12	1.20E-09	0.59	达标
	→ 3/13	年平均	平均值	5.17E-13	6.00E-10	0.09	达标
	三门县实验学校	日平均	20230712	2.98E-12	1.20E-09	0.25	达标
	—门云大型子仪	年平均	平均值	1.70E-13	6.00E-10	0.03	达标
	三门第二高级中学	日平均	20230713	5.12E-12	1.20E-09	0.43	达标
	—口尔—回级甲子	年平均	平均值	3.56E-13	6.00E-10	0.06	达标
	上叶小学	日平均	20230113	9.99E-12	1.20E-09	0.83	达标

年平均 平均值 上叶实验幼儿园 日平均 2023041 年平均 平均值 日平均 2023020 年平均 平均值 日平均 2023101 年平均 平均值 公路路政管理大人 日平均 2023091 二中队 年平均 平均值 区域最大落地浓度 日平均 20231220 年平均 平均值 1 小时 2301272 湘山村 日平均	7.36E-13 5.24E-12 5.38E-13 5.67E-12 4.39E-13 5.88E-12 4.50E-13 2.30E-10	6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10 1.20E-09	0.12 0.70 0.12 0.44 0.09 0.47 0.07 0.49	达标标 达标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标标
上叶实验幼儿园 年平均 平均值 马娄小学 日平均 20230202 年平均 平均值 三门康宁医院 日平均 20231012 年平均 平均值 公路路政管理大人 二中队 日平均 20230914 年平均 平均值 区域最大落地浓度 日平均 20231220 年平均 平均值 1 小时 2301272	7.36E-13 5.24E-12 5.38E-13 5.67E-12 4.39E-13 5.88E-12 4.50E-13 2.30E-10	6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10	0.12 0.44 0.09 0.47 0.07 0.49	达标 达标 达标 达标 达标
马娄小学 日平均 20230200 年平均 平均值 日平均 20231010 年平均 平均值 公路路政管理大人 日平均 20230914 二中队 年平均 平均值 区域最大落地浓度 日平均 20231220 年平均 平均值 1 小时 2301272	5.24E-12 5.38E-13 2. 5.67E-12 4.39E-13 5.88E-12 4.50E-13 2.30E-10	1.20E-09 6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10	0.44 0.09 0.47 0.07 0.49	达标 达标 达标
与娄小学年平均平均值三门康宁医院日平均20231012年平均平均值公路路政管理大人 二中队日平均20230912年平均平均值区域最大落地浓度日平均20231220年平均平均值1 小时2301272	5.38E-13 5.67E-12 4.39E-13 5.88E-12 4.50E-13 2.30E-10	6.00E-10 1.20E-09 6.00E-10 1.20E-09 6.00E-10	0.09 0.47 0.07 0.49	达标 达标 达标
三门康宁医院日平均20231012年平均平均值公路路政管理大人 二中队日平均20230914年平均年平均平均值区域最大落地浓度日平均20231220年平均平均值1小时2301272	2 5.67E-12 4.39E-13 5.88E-12 4.50E-13 2.30E-10	1.20E-09 6.00E-10 1.20E-09 6.00E-10	0.47 0.07 0.49	达标 达标
三门康宁医院 年平均 平均值 公路路政管理大人 日平均 20230914 二中队 年平均 平均值 区域最大落地浓度 日平均 20231226 年平均 平均值 1 小时 2301272	4.39E-13 5.88E-12 4.50E-13 2.30E-10	6.00E-10 1.20E-09 6.00E-10	0.07 0.49	达标
公路路政管理大人 日平均 20230914 二中队 年平均 平均值 区域最大落地浓度 日平均 20231220 年平均 平均值 1 小时 2301272	5.88E-12 4.50E-13 2.30E-10	1.20E-09 6.00E-10	0.49	
二中队年平均平均值区域最大落地浓度日平均20231220年平均平均值1 小时2301272	4.50E-13 2.30E-10	6.00E-10		计大规
区域最大落地浓度 日平均 20231220 年平均 平均值 1 小时 2301272	5 2.30E-10		0.00	
区域最大洛地浓度 年平均 平均值 1 小时 2301272			0.08	达标
# 年平均 平均值		1.20E-09	19.2	达标
	7.68E-11	6.00E-10	12.8	达标
	5.46E-04	2.00E-02	2.73	达标
日平均 230705	3.09E-05	7.00E-03	0.44	达标
城西村 1 小时 23051700	5.94E-04	2.00E-02	2.97	达标
- 現西科 日平均 230821	3.06E-05	7.00E-03	0.44	达标
1 小时 23101419	6.01E-04	2.00E-02	3	达标
松门村 日平均 230713	3.45E-05	7.00E-03	0.49	达标
入叫.++ 1 小时 23030108	8.66E-04	2.00E-02	4.33	达标
金叶村 日平均 230714	6.75E-05	7.00E-03	0.96	达标
1 小时 23020920	6.48E-04	2.00E-02	3.24	达标
样和村 日平均 230713	5.26E-05	7.00E-03	0.75	达标
1 小时 2304130	7 1.28E-03	2.00E-02	6.39	达标
下坑村 日平均 230113	6.69E-05	7.00E-03	0.96	达标
1 小时 2304110	1.31E-03	2.00E-02	6.55	达标
上坑村 日平均 230411	8.83E-05	7.00E-03	1.26	达标
上京 1 小时 23032119	6.77E-04	2.00E-02	3.39	达标
后郭村 日平均 230203	4.42E-05	7.00E-03	0.63	达标
氟化 1 小时 23032119	7.44E-04	2.00E-02	3.72	达标
物 前郭村 日平均 231002	5.09E-05	7.00E-03	0.73	达标
1 小时 2308230	7 7.67E-04	2.00E-02	3.83	达标
港溪村 日平均 231003	6.44E-05	7.00E-03	0.92	达标
1 小时 2305102	6.13E-04	2.00E-02	3.06	达标
溪东村 日平均 230203	5.48E-05	7.00E-03	0.78	达标
1 小时 2304030	2 6.24E-04	2.00E-02	3.12	达标
下谢村 日平均 230422	5.45E-05	7.00E-03	0.78	达标
1 小时 2301180		2.00E-02	3.13	达标
小坑村 日平均 230813	5.50E-05	7.00E-03	0.79	达标
1 小財 2308160		2.00E-02	4.12	达标
石头岙村 日平均 231223	6.79E-05	7.00E-03	0.97	达标
1 小財 23121004		2.00E-02	3.53	达标
下朱路村 日平均 231112	6.35E-05	7.00E-03	0.91	达标
1 小財 2301120		2.00E-02	5.98	达标
马村 日平均 231204	5.93E-05	7.00E-03	0.85	达标
三门县实验学校 1 小时 23071203		2.00E-02	3.14	达标

					1	ı	Ī
		日平均	230712	2.67E-05	7.00E-03	0.38	达标
	三门第二高级中学	1 小时	23042207	8.08E-04	2.00E-02	4.04	达标
	<u> </u>	日平均	230713	4.27E-05	7.00E-03	0.61	达标
	上叶小学	1 小时	23042607	7.49E-04	2.00E-02	3.74	达标
	工引行子	日平均	230113	9.05E-05	7.00E-03	1.29	达标
	上叶实验幼儿园	1 小时	23041107	1.32E-03	2.00E-02	6.61	达标
	工門安巡纫几四	日平均	230411	7.37E-05	7.00E-03	1.05	达标
	马娄小学	1 小时	23040222	6.88E-04	2.00E-02	3.44	达标
	刊安小子	日平均	230203	4.72E-05	7.00E-03	0.67	达标
	三门康宁医院	1 小时	23091407	1.19E-03	2.00E-02	5.93	达标
	—11冰1区5%	日平均	231012	5.15E-05	7.00E-03	0.74	达标
	公路路政管理大人	1 小时	23091407	1.26E-03	2.00E-02	6.31	达标
	二中队	日平均	230914	5.25E-05	7.00E-03	0.75	达标
	区特国十类评学中	1 小时	23053123	1.85E-02	2.00E-02	92.66	达标
	区域最大落地浓度	日平均	230604	1.55E-03	7.00E-03	22.16	达标
	Мп. I. 4-4	日平均	230705	1.37E-03	1.50E-01	0.92	达标
	湘山村	年平均	平均值	8.44E-05	7.00E-02	0.12	达标
	44 44	日平均	230504	1.37E-03	1.50E-01	0.92	达标
	城西村	年平均	平均值	5.29E-05	7.00E-02	0.08	达标
	4/\ ₹¬ ↓ .+	日平均	230713	1.39E-03	1.50E-01	0.93	达标
	松门村	年平均	平均值	9.69E-05	7.00E-02	0.14	达标
	∧п.+ +	日平均	230714	2.77E-03	1.50E-01	1.85	达标
	金叶村	年平均	平均值	1.33E-04	7.00E-02	0.19	达标
) Y. 壬ロ ↓ .	日平均	230713	2.01E-03	1.50E-01	1.34	达标
	祥和村	年平均	平均值	1.29E-04	7.00E-02	0.18	达标
	工持村	日平均	230113	3.08E-03	1.50E-01	2.05	达标
	下坑村	年平均	平均值	2.31E-04	7.00E-02	0.33	达标
	上坑村	日平均	230411	4.35E-03	1.50E-01	2.9	达标
	工力[小]	年平均	平均值	2.07E-04	7.00E-02	0.3	达标
PM_{10}	后郭村	日平均	230203	1.67E-03	1.50E-01	1.11	达标
	/口 孙门	年平均	平均值	1.58E-04	7.00E-02	0.23	达标
	前郭村	日平均	231002	1.96E-03	1.50E-01	1.3	达标
	ሆነ ወኝ ሆዘ	年平均	平均值	1.79E-04	7.00E-02	0.26	达标
	讲·逸 #+	日平均	231003	2.44E-03	1.50E-01	1.62	达标
	港溪村	年平均	平均值	2.30E-04	7.00E-02	0.33	达标
	源左县	日平均	230203	2.07E-03	1.50E-01	1.38	达标
	溪东村	年平均	平均值	1.24E-04	7.00E-02	0.18	达标
	上钟针	日平均	230422	2.15E-03	1.50E-01	1.43	达标
	下谢村	年平均	平均值	2.21E-04	7.00E-02	0.32	达标
	小持村	日平均	230813	2.10E-03	1.50E-01	1.4	达标
	小坑村	年平均	平均值	8.08E-05	7.00E-02	0.12	达标
	工业系针	日平均	231223	2.59E-03	1.50E-01	1.73	达标
	石头岙村	年平均	平均值	1.42E-04	7.00E-02	0.2	达标
	下朱路村	日平均	231112	2.55E-03	1.50E-01	1.7	达标

	ケボル	THE	1.765.04	7.00F.02	0.25	71.1-
						达标
马村						达标
						达标
三门县实验学校						达标
						达标
三门第二高级中学				1.50E-01	1.13	达标
			9.83E-05	7.00E-02	0.14	达标
上叶小学			3.85E-03	1.50E-01	2.57	达标
工-1.1.1	年平均	平均值	2.01E-04	7.00E-02	0.29	达标
上叶实验幼儿园	日平均	230411	3.48E-03	1.50E-01	2.32	达标
工作人题初记图	年平均	平均值	2.03E-04	7.00E-02	0.29	达标
马 米 小 学	日平均	230203	1.78E-03	1.50E-01	1.19	达标
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	年平均	平均值	1.52E-04	7.00E-02	0.22	达标
二门事学医院	日平均	230914	2.10E-03	1.50E-01	1.4	达标
—11/來 1	年平均	平均值	1.17E-04	7.00E-02	0.17	达标
公路路政管理大人	日平均	230914	2.44E-03	1.50E-01	1.63	达标
二中队	年平均	平均值	1.22E-04	7.00E-02	0.17	达标
区科里十茶中茶中	日平均	230604	5.67E-02	1.50E-01	37.79	达标
区	年平均	平均值	6.81E-03	7.00E-02	9.73	达标
Mrs. L. J. J.	日平均	230705	6.87E-04	7.50E-02	0.92	达标
湘山州	年平均	平均值	4.22E-05	3.50E-02	0.12	达标
1.1. 77. 1.1.	日平均	230504	6.87E-04	7.50E-02	0.92	达标
	年平均	平均值	2.64E-05	3.50E-02	0.08	达标
TV 5-1 TT	日平均	230713	6.94E-04	7.50E-02	0.93	达标
松门州	年平均	平均值	4.84E-05	3.50E-02	0.14	达标
V 41 77	日平均	230714	1.38E-03	7.50E-02	1.85	达标
金叶州	年平均	平均值	6.63E-05	3.50E-02	0.19	达标
114 TH L.L	日平均	230713	1.00E-03	7.50E-02	1.34	达标
件和 柯	年平均	平均值	6.47E-05	3.50E-02	0.18	达标
71211	日平均	230113	1.54E-03	7.50E-02	2.05	达标
卜坑村	年平均	平均值	1.15E-04	3.50E-02	0.33	达标
1 1244	日平均	230411	2.18E-03	7.50E-02	2.9	达标
上玩村	年平均	平均值	1.04E-04	3.50E-02	0.3	达标
<u> </u>	日平均	230203	8.35E-04	7.50E-02	1.11	达标
后乳村	年平均	平均值	7.90E-05	3.50E-02	0.23	达标
ا ا ومد عار	日平均	231002	9.77E-04	7.50E-02	1.3	达标
	年平均	平均值	8.93E-05	3.50E-02	0.26	达标
VII) 25 1	日平均	231003	1.22E-03	7.50E-02	1.62	达标
港溪村	年平均	平均值	1.15E-04	3.50E-02	0.33	达标
75 de 11	日平均	230203	1.03E-03	7.50E-02	1.38	达标
溪东村	年平均	平均值	6.19E-05	3.50E-02	0.18	达标
	日平均	230422	1.07E-03		1.43	达标
ト谢村	年平均		1.10E-04			达标
小坑村	日平均	230813	1.05E-03	7.50E-02	1.4	达标
	三门县实验学校 三门第二小学 上叶实验, 少少儿园 马门路二大 四日 公域最 湘 城 松 金 祥 大 山 西 村 村 村 村 村 村 村 村 村 村 村 村 村 村 村 村 村 村	三门 年平均 三门 年平均 三门 年平平均 上 日 上 日 上 日 上 日 上 日 上 日 上 日 上 日 上 日 日 年日 日 年	马村 日平均 231111 年平均 平均值 三门县实验学校 日平均 230517 年平均 平均值 三门第二高级中学 日平均 230713 年平均 平均值 日平均 230113 年平均 平均值 日平均 230411 年平均 平均值 日平均 230203 年平均 平均值 日平均 230914 年平均 平均值 日平均 230705 年平均 平均值 日平均 230705 年平均 平均值 日平均 230713 年平均 平均值 最中村 日平均 230713 年平均 平均值 日平均 230411 年平均 平均值 日平均 2	马村 日平均 231111 2.23E-03 年平均 平均值 1.38E-04 三门县实验学校 日平均 230517 1.22E-03 年平均 平均值 4.49E-05 三门第二高级中学 日平均 230713 1.70E-03 在平均 平均值 9.83E-05 上叶小学 日平均 230113 3.85E-03 在平均 平均值 2.01E-04 上叶实验幼儿园 年平均 平均值 2.03E-04 日平均 230203 1.78E-03 在平均 平均值 2.03E-04 日平均 230203 1.78E-03 在平均 平均值 2.10E-03 在平均 平均值 1.17E-04 日平均 230914 2.10E-03 在平均 平均值 1.17E-04 日平均 230914 2.44E-03 在平均 平均值 1.22E-04 年平均 平均值 6.81E-03 相山村 日平均 230705 6.87E-04 在平均 平均值 4.22E-05 日平均 230713 </td <td>马村 日平均 231111 2.23E-03 1.50E-01 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 三门第二高级中学 日平均 230713 1.70E-03 1.50E-01 上叶小学 日平均 230113 3.85E-03 1.50E-01 上叶字验幼儿园 日平均 230113 3.85E-03 1.50E-01 上叶实验幼儿园 日平均 230411 3.48E-03 1.50E-01 车平均 平均值 2.03E-04 7.00E-02 日平均 230203 1.78E-03 1.50E-01 车平均 平均值 1.52E-04 7.00E-02 三门康宁医院 日平均 230914 2.10E-03 1.50E-01 在平均 平均值 1.52E-04 7.00E-02 公路政技术转域度 日平均 230914 2.44E-03 1.50E-01 在平均 平均值 1.22E-04 7.00E-02 区域最大落地液度 日平均 230705 6.87E-04 7.50E-02 域内有 平均值 4.22E-05</td> <td>马村 目平均 231111 2.23E-03 1.50E-01 1.49 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 0.81 三门第二高级中学 年平均 平均值 4.49E-05 7.00E-02 0.06 百口第二高级中学 年平均 平均值 4.49E-05 7.00E-02 0.04 日平均 230713 1.70E-03 1.50E-01 1.13 在平均 平均值 2.01E-04 7.00E-02 0.29 上中小学 日平均 230113 3.85E-03 1.50E-01 2.57 在平均 平均值 2.01E-04 7.00E-02 0.29 日平均 230411 3.48E-03 1.50E-01 2.32 日平均 230203 1.78E-03 1.50E-01 1.9 中半均 230203 1.78E-03 1.50E-01 1.4 公静康守医院 日平均 230203 1.50E-01 1.4 公静康守方 平均值 1.22E-04 7.00E-02 0.22 日康中均 230404 5.67E-02 1.50E-01 1.63</td>	马村 日平均 231111 2.23E-03 1.50E-01 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 三门第二高级中学 日平均 230713 1.70E-03 1.50E-01 上叶小学 日平均 230113 3.85E-03 1.50E-01 上叶字验幼儿园 日平均 230113 3.85E-03 1.50E-01 上叶实验幼儿园 日平均 230411 3.48E-03 1.50E-01 车平均 平均值 2.03E-04 7.00E-02 日平均 230203 1.78E-03 1.50E-01 车平均 平均值 1.52E-04 7.00E-02 三门康宁医院 日平均 230914 2.10E-03 1.50E-01 在平均 平均值 1.52E-04 7.00E-02 公路政技术转域度 日平均 230914 2.44E-03 1.50E-01 在平均 平均值 1.22E-04 7.00E-02 区域最大落地液度 日平均 230705 6.87E-04 7.50E-02 域内有 平均值 4.22E-05	马村 目平均 231111 2.23E-03 1.50E-01 1.49 三门县实验学校 日平均 230517 1.22E-03 1.50E-01 0.81 三门第二高级中学 年平均 平均值 4.49E-05 7.00E-02 0.06 百口第二高级中学 年平均 平均值 4.49E-05 7.00E-02 0.04 日平均 230713 1.70E-03 1.50E-01 1.13 在平均 平均值 2.01E-04 7.00E-02 0.29 上中小学 日平均 230113 3.85E-03 1.50E-01 2.57 在平均 平均值 2.01E-04 7.00E-02 0.29 日平均 230411 3.48E-03 1.50E-01 2.32 日平均 230203 1.78E-03 1.50E-01 1.9 中半均 230203 1.78E-03 1.50E-01 1.4 公静康守医院 日平均 230203 1.50E-01 1.4 公静康守方 平均值 1.22E-04 7.00E-02 0.22 日康中均 230404 5.67E-02 1.50E-01 1.63

		年平均	亚拉店	4 04E 05	3.50E-02	0.12	达标
		<u>平下均</u> 日平均	平均值	4.04E-05		0.12	
	石头岙村	年平均	231223 平均值	1.30E-03 7.08E-05	7.50E-02 3.50E-02	1.73 0.2	
			+				
	下朱路村	日平均	231112	1.27E-03	7.50E-02	1.7	达标
		年平均	平均值	8.77E-05	3.50E-02	0.25	<u> </u>
	马村	日平均	231111	1.12E-03	7.50E-02	1.49	<u> </u>
		年平均	平均值	6.92E-05	3.50E-02	0.2	<u> </u>
	三门县实验学校	日平均	230517	6.08E-04	7.50E-02	0.81	<u> </u>
		年平均	平均值	2.24E-05	3.50E-02	0.06	<u> </u>
	三门第二高级中学	日平均	230713	8.47E-04	7.50E-02	1.13	<u> </u>
	7 7 7 7 7 7	年平均	平均值	4.91E-05	3.50E-02	0.14	<u> </u>
	上叶小学	日平均	230113	1.93E-03	7.50E-02	2.57	达标
		年平均	平均值	1.00E-04	3.50E-02	0.29	<u> </u>
	上叶实验幼儿园	日平均	230411	1.74E-03	7.50E-02	2.32	达标
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	年平均	平均值	1.01E-04	3.50E-02	0.29	达标
	马娄小学	日平均	230203	8.90E-04	7.50E-02	1.19	达标
	72,4,4	年平均	平均值	7.62E-05	3.50E-02	0.22	达标
	三门康宁医院	日平均	230914	1.05E-03	7.50E-02	1.4	达标
		年平均	平均值	5.87E-05	3.50E-02	0.17	达标
	公路路政管理大人	日平均	230914	1.22E-03	7.50E-02	1.63	达标
	二中队	年平均	平均值	6.09E-05	3.50E-02	0.17	达标
	区域最大落地浓度	日平均	230604	2.83E-02	7.50E-02	37.79	达标
	_	年平均	平均值	3.40E-03	3.50E-02	9.73	达标
	湘山村	1 小时	23081907	7.52E-04	5.00E-01	0.15	达标
		日平均	230819	3.66E-05	1.50E-01	0.02	达标
		年平均	平均值	3.19E-06	6.00E-02	0.01	达标
	城西村	1 小时	23081907	9.36E-04	5.00E-01	0.19	达标
		日平均	230819	4.13E-05	1.50E-01	0.03	达标
		年平均	平均值	3.06E-06	6.00E-02	0.01	达标
	松门村	1 小时	23081907	6.64E-04	5.00E-01	0.13	达标
		日平均	230714	3.65E-05	1.50E-01	0.02	达标
		年平均	平均值	3.78E-06	6.00E-02	0.01	达标
	金叶村	1 小时	23090509	8.98E-04	5.00E-01	0.18	达标
SO_2		日平均	230905	5.90E-05	1.50E-01	0.04	达标
		年平均	平均值	7.79E-06	6.00E-02	0.01	达标
	祥和村	1 小时	23082708	8.84E-04	5.00E-01	0.18	达标
		日平均	230630	1.10E-04	1.50E-01	0.07	达标
		年平均	平均值	2.36E-05	6.00E-02	0.04	达标
	下坑村	1 小时	23090509	9.82E-04	5.00E-01	0.2	达标
		日平均	230630	8.59E-05	1.50E-01	0.06	达标
		年平均	平均值	1.49E-05	6.00E-02	0.02	达标
		1 1 20					
		1 小时	23041908	9.40E-04	5.00E-01	0.19	达标
	上坑村			9.40E-04 1.07E-04	5.00E-01 1.50E-01	0.19 0.07	达标 达标

	1 小时	23082807	1.79E-03	5.00E-01	0.36	达标
后郭村	日平均	230828	1.07E-04	1.50E-01	0.07	达标
	年平均	平均值	1.04E-05	6.00E-02	0.02	达标
	1 小时	23042408	1.62E-03	5.00E-01	0.32	达标
前郭村	日平均	230828	1.08E-04	1.50E-01	0.07	达标
	年平均	平均值	1.68E-05	6.00E-02	0.03	达标
	1 小时	23081707	1.44E-03	5.00E-01	0.29	达标
港溪村	日平均	230719	6.85E-05	1.50E-01	0.05	达标
	年平均	平均值	1.04E-05	6.00E-02	0.02	达标
	1 小时	23082807	1.37E-03	5.00E-01	0.27	达标
溪东村	日平均	230422	7.97E-05	1.50E-01	0.05	达标
	年平均	平均值	5.44E-06	6.00E-02	0.01	达标
	1 小时	23081707	1.09E-03	5.00E-01	0.22	达标
下谢村	日平均	230719	5.19E-05	1.50E-01	0.03	达标
	年平均	平均值	7.74E-06	6.00E-02	0.01	达标
	1 小时	23032608	7.96E-04	5.00E-01	0.16	达标
小坑村	日平均	230127	4.90E-05	1.50E-01	0.03	达标
7 /3/14	年平均	平均值	4.37E-06	6.00E-02	0.01	达标
	1 小时	23081607	1.04E-03	5.00E-01	0.21	达标
石头岙村	日平均	230816	4.75E-05	1.50E-01	0.03	达标
	年平均	平均值	6.65E-06	6.00E-02	0.01	达标
	1 小时	23042608	6.07E-04	5.00E-01	0.12	达标
下朱路村	日平均	230424	3.86E-05	1.50E-01	0.03	达标
1 2144 14	年平均	平均值	6.71E-06	6.00E-02	0.01	达标
	1 小时	23081607	8.57E-04	5.00E-01	0.17	达标
马村	日平均	230115	6.05E-05	1.50E-01	0.04	达标
7,77	年平均	平均值	6.80E-06	6.00E-02	0.01	达标
	1 小时	23081907	8.84E-04	5.00E-01	0.18	达标
三门县实验学校	日平均	230819	3.95E-05	1.50E-01	0.03	达标
	年平均	平均值	2.67E-06	6.00E-02	0	达标
	1 小时	23081907	7.44E-04	5.00E-01	0.15	达标
三门第二高级中学	日平均	230819	4.15E-05	1.50E-01	0.03	达标
					0.01	达标
	年平均	平均值	5.01E-06	6.00E-02	0.01	
		平均值 23090509	5.01E-06 1.09E-03			
上叶小学	1 小时	23090509	1.09E-03	5.00E-01	0.22	达标
上叶小学		23090509 230905	1.09E-03 9.30E-05	5.00E-01 1.50E-01	0.22	达标 达标
上叶小学	1 小时日平均	23090509	1.09E-03	5.00E-01	0.22	达标 达标 达标
上叶小学上叶实验幼儿园	1 小时日平均年平均	23090509 230905 平均值	1.09E-03 9.30E-05 1.29E-05	5.00E-01 1.50E-01 6.00E-02	0.22 0.06 0.02	达标 达标 达标 达标
	1 小时 日平均 年平均 1 小时	23090509 230905 平均值 23090509 230905	1.09E-03 9.30E-05 1.29E-05 1.10E-03	5.00E-01 1.50E-01 6.00E-02 5.00E-01 1.50E-01	0.22 0.06 0.02 0.22 0.06	达标 达标 达标 达标 达标
	1 小时日平均年平均1 小时日平均	23090509 230905 平均值 23090509	1.09E-03 9.30E-05 1.29E-05 1.10E-03 8.85E-05	5.00E-01 1.50E-01 6.00E-02 5.00E-01	0.22 0.06 0.02 0.22	达标 达标 达标 达标
上叶实验幼儿园	1 小时日平均年平均1 小时日平均年平均	23090509 230905 平均值 23090509 230905 平均值	1.09E-03 9.30E-05 1.29E-05 1.10E-03 8.85E-05 1.65E-05 1.82E-03	5.00E-01 1.50E-01 6.00E-02 5.00E-01 1.50E-01 6.00E-02 5.00E-01	0.22 0.06 0.02 0.22 0.06 0.03	达标 达标 达标 达标 达标 达标
	1 小时 日平均 年平均 1 小时 日平均 1 小时 日平均	23090509 230905 平均值 23090509 230905 平均值 23082807 230828	1.09E-03 9.30E-05 1.29E-05 1.10E-03 8.85E-05 1.65E-05 1.82E-03 1.11E-04	5.00E-01 1.50E-01 6.00E-02 5.00E-01 1.50E-01 6.00E-02 5.00E-01 1.50E-01	0.22 0.06 0.02 0.22 0.06 0.03 0.36 0.07	达标 达标 达标 达标 达标 达标 达标
上叶实验幼儿园	1 小时 日平均 年平均 1 小时 日平均 年平均 1 小时	23090509 230905 平均值 23090509 230905 平均值 23082807	1.09E-03 9.30E-05 1.29E-05 1.10E-03 8.85E-05 1.65E-05 1.82E-03	5.00E-01 1.50E-01 6.00E-02 5.00E-01 1.50E-01 6.00E-02 5.00E-01	0.22 0.06 0.02 0.22 0.06 0.03 0.36	达标 达标 达标 达标 达标 达标

		年平均	平均值	1.33E-05	6.00E-02	0.02	达标
		1 小时	23091108	1.10E-03	5.00E-01	0.22	达标
	公路路政管理大人 二中队	日平均	230725	8.47E-05	1.50E-01	0.06	达标
		年平均	平均值	1.50E-05	6.00E-02	0.02	达标
	区域最大落地浓度	1 小时	23121705	1.89E-02	5.00E-01	3.79	达标
		<u> </u>	231023	3.31E-03	1.50E-01	2.21	达标
		年平均	平均值	9.28E-04	6.00E-02	1.55	达标
	湘山村	1 小时	23081907	5.61E-03	2.00E-01	2.81	达标
		日平均	230819	2.73E-04	8.00E-02	0.34	达标
		年平均	平均值	2.38E-05	4.00E-02	0.06	达标
		1 小时	23081907	6.98E-03	2.00E-01	3.49	达标
	城西村	日平均	230819	3.08E-04	8.00E-02	0.39	达标
		年平均	平均值	2.28E-05	4.00E-02	0.06	达标
		1 小时	23081907	4.95E-03	2.00E-01	2.47	达标
	松门村	日平均	230714	2.72E-04	8.00E-02	0.34	达标
		年平均	平均值	2.82E-05	4.00E-02	0.07	达标
		1 小时	23090509	6.70E-03	2.00E-01	3.35	达标
	金叶村	日平均	230905	4.40E-04	8.00E-02	0.55	达标
		年平均	平均值	5.82E-05	4.00E-02	0.15	达标
	祥和村	1 小时	23082708	6.60E-03	2.00E-01	3.3	达标
		日平均	230630	8.19E-04	8.00E-02	1.02	达标
		年平均	平均值	1.76E-04	4.00E-02	0.44	达标
	下坑村	1 小时	23090509	7.35E-03	2.00E-01	3.67	达标
		日平均	230630	6.42E-04	8.00E-02	0.8	达标
		年平均	平均值	1.11E-04	4.00E-02	0.28	达标
NO_2		1 小时	23041908	7.02E-03	2.00E-01	3.51	达标
	上坑村	日平均	230728	7.99E-04	8.00E-02	1	达标
		年平均	平均值	1.55E-04	4.00E-02	0.39	达标
	后郭村	1 小时	23082807	1.33E-02	2.00E-01	6.67	达标
		日平均	230828	8.00E-04	8.00E-02	1	达标
		年平均	平均值	7.76E-05	4.00E-02	0.19	达标
	前郭村	1 小时	23042408	1.21E-02	2.00E-01	6.04	达标
		日平均	230828	8.08E-04	8.00E-02	1.01	达标
		年平均	平均值	1.25E-04	4.00E-02	0.31	达标
	港溪村	1 小时	23081707	1.07E-02	2.00E-01	5.35	达标
		日平均	230719	5.11E-04	8.00E-02	0.64	达标
		年平均	平均值	7.77E-05	4.00E-02	0.19	达标
	溪东村	1 小时	23082807	1.02E-02	2.00E-01	5.11	达标
		日平均	230422	5.95E-04	8.00E-02	0.74	达标
		年平均	平均值	4.06E-05	4.00E-02	0.1	达标
		1 小时	23081707	8.14E-03	2.00E-01	4.07	达标
	下谢村	日平均	230719	3.87E-04	8.00E-02	0.48	达标
		年平均	平均值	5.77E-05	4.00E-02	0.14	达标
	小坑村	1 小时	23032608	5.94E-03	2.00E-01	2.97	达标

		220127	2.665.04	0.005.02	0.46	77.4-:
		t t				达标
		1				达标
ナソエル						达标
有头 岙柯		 				<u> </u>
						达标
		 				达标
下朱路村		t				达标
		H				达标
马村		1				达标
		 				达标
		t				达标
		 	6.60E-03	2.00E-01		达标
三门县实验学校	日平均	230819	2.95E-04	8.00E-02	0.37	达标
	年平均	平均值	1.99E-05	4.00E-02	0.05	达标
	1 小时	23081907	5.55E-03	2.00E-01	2.77	达标
三门第二高级中学	日平均	230819	3.09E-04	8.00E-02	0.39	达标
	年平均	平均值	3.74E-05	4.00E-02	0.09	达标
	1 小时	23090509	8.14E-03	2.00E-01	4.07	达标
上叶小学	日平均	230905	6.95E-04	8.00E-02	0.87	达标
	年平均	平均值	9.62E-05	4.00E-02	0.24	达标
上叶实验幼儿园	1 小时	23090509	8.19E-03	2.00E-01	4.09	达标
	日平均	230905	6.61E-04	8.00E-02	0.83	达标
	年平均	平均值	1.23E-04	4.00E-02	0.31	达标
马娄小学	1 小时	23082807	1.36E-02	2.00E-01	6.8	达标
	日平均	230828	8.25E-04	8.00E-02	1.03	达标
	年平均	平均值	8.26E-05	4.00E-02	0.21	达标
	1 小时	23090107	8.29E-03	2.00E-01	4.15	达标
三门康宁医院	日平均	230725	6.43E-04	8.00E-02	0.8	达标
	年平均	平均值	9.92E-05	4.00E-02	0.25	达标
公路路政管理大人 二中队	1 小时	23091108	8.19E-03	2.00E-01	4.09	达标
	日平均	230725	6.32E-04	8.00E-02	0.79	达标
	年平均	平均值	1.12E-04	4.00E-02	0.28	达标
区域最大落地浓度	1小时	23121705	1.42E-01	2.00E-01	70.87	达标
	日平均	231023	2.48E-02	8.00E-02	30.99	达标
	年平均	平均值	6.94E-03	4.00E-02	17.36	达标
湘山村	日平均	230705	2.62E-03	3.00E-01	0.87	达标
	年平均	平均值	1.47E-04	2.00E-01	0.07	达标
城西村	日平均	230504	2.66E-03	3.00E-01	0.89	达标
	年平均	平均值	8.46E-05	2.00E-01	0.04	达标
松门村	日平均	230713	2.60E-03	3.00E-01	0.87	达标
	年平均	平均值	1.69E-04	2.00E-01	0.08	达标
V 11 TT	日平均	230714	5.22E-03	3.00E-01	1.74	达标
金叶村	年平均	平均值	2.18E-04	2.00E-01	0.11	达标
		1 		1		达标
	三门县实验学校 三门第二高级中学 上叶实验幼儿园 马娄小学 三门康宁医院 公路路二中家路二中家路工中, 区域最大落地浓度 湘山村 城西村	中学地域	年平均 平均値 1 小时 23081607 日平均 230816 年平均 平均値 1 小时 23042608 日平均 230424 年平均 平均値 1 小时 23081607 日平均 23081607 日平均 23081607 日平均 23081607 日平均 23081907 日平均 230819 年平均 平均値 1 小时 23081907 日平均 230819 年平均 平均値 1 小时 23090509 日平均 230905 年平均 平均値 1 小时 23090509 日平均 230828 年平均 平均値 1 小时 23090509 日平均 230828 年平均 平均値 1 小时 23090107 日平均 230725 年平均 平均値 1 小时 23090107 日平均 230725 年平均 平均値 1 小时 23091108 日平均 230725 年平均 平均値 1 小时 23091108 日平均 230725 年平均 平均値 1 小时 23121705 日平均 231023 年平均 平均値 日平均 230705 年平均 平均値 日平均 230504 年平均 平均値 日平均 230504 年平均 平均值 日平均 230713 年平均 平均值 日平均 230714 日平均 230714 日平均 230714 日平均 230714 日平均 230714 日平日 230714 日平日 230714 日平日 230714 日平日 230714 日平日 230714 日 11	田大路村 年平均 平均値 3.26E-05 日平均 23081607 7.74E-03 日平均 23081607 7.74E-03 日平均 230816 3.55E-04 年平均 平均値 4.96E-05 日平均 230424 2.87E-04 年平均 平均値 5.01E-05 日平均 23081607 6.39E-03 日平均 230115 4.51E-04 年平均 平均値 5.07E-05 日平均 23081907 6.60E-03 日平均 230819 2.95E-04 年平均 平均値 1.99E-05 日平均 230819 3.09E-04 年平均 平均値 3.74E-05 日平均 2309050 6.95E-04 年平均 平均値 9.62E-05 日平均 2309050 6.95E-04 年平均 平均値 1.23E-04 日平均 230925 6.43E-04 年平均 平均値 9.25E-04 年平均 平均値 9.62E-05 日平均 230925 6.43E-04 年平均 平均値 1.23E-04 日平均 230925 6.43E-04 年平均 平均値 9.92E-05 日平均 230725 6.43E-04 年平均 平均値 9.92E-05 日平均 230725 6.43E-04 年平均 平均値 9.92E-05 日平均 230725 6.43E-04 年平均 平均値 1.12E-04 日平均 230705 2.62E-03 日平均 230725 6.32E-04 年平均 平均値 1.12E-04 日平均 230705 2.62E-03 日平均 230725 6.32E-04 年平均 平均値 1.12E-04 日平均 230705 2.62E-03 日平均 230705 2.62E-03 年平均 中均値 1.47E-04 日平均 230504 2.66E-03 年平均 平均値 1.47E-04 日平均 230713 2.60E-03 年平均 平均値 1.69E-04	有头番村 平均値 3.26E-05 4.00E-02 1 小时 23081607 7.74E-03 2.00E-01 日平均 230816 3.55E-04 8.00E-02 年平均 平均値 4.96E-05 4.00E-02 下朱路村 日平均 23042608 4.53E-03 2.00E-01 日平均 230424 2.87E-04 8.00E-02 日平均 23081607 6.39E-03 2.00E-01 日平均 230115 4.51E-04 8.00E-02 年平均 平均値 5.07E-05 4.00E-02 1 小时 23081907 6.60E-03 2.00E-01 三门县实验学校 日平均 230819 2.95E-04 8.00E-02 年平均 平均値 1.90E-05 4.00E-02 1 小时 230819 3.09E-04 8.00E-02 年平均 平均値 3.74E-05 4.00E-02 1 小时 230905 6.95E-04 8.00E-02 年平均 平均値 9.62E-05 4.00E-02 上中实验幼儿园 日平均 230905 6.95E-04 8.00E-02	年平均 平均値 3.26E-05 4.00E-02 0.08 日平均 23081607 7.74E-03 2.00E-01 3.87 日平均 23081607 7.74E-03 2.00E-01 3.87 日平均 2308160 3.55E-04 8.00E-02 0.44 年平均 平均値 4.96E-05 4.00E-02 0.12 下朱路村 日平均 23042608 4.53E-03 2.00E-01 2.27 日平均 230424 2.87E-04 8.00E-02 0.36 年平均 平均値 5.01E-05 4.00E-02 0.13 日平均 23081607 6.39E-03 2.00E-01 3.2 日平均 23081607 6.39E-03 2.00E-01 3.2 日平均 23081907 6.60E-03 2.00E-01 3.3 日平均 23081907 6.60E-03 2.00E-01 3.3 日平均 23081907 5.55E-03 2.00E-01 3.3 日平均 23081907 5.55E-03 2.00E-01 2.77 日平均 23090509 8.14E-03 2.00E-01 4.07 日平均 23090509 8.14E-03 2.00E-01 4.07 日平均 23090509 8.19E-03 2.00E-01 4.07 日平均 23090509 8.19E-03 2.00E-01 4.09 日平均 2309050 6.61E-04 8.00E-02 0.83 年平均 平均値 9.62E-05 4.00E-02 0.83 日平均 2309050 6.61E-04 8.00E-02 0.83 日平均 2309050 6.61E-04 4.00E-02 0.24 日平均 23082807 1.36E-02 2.00E-01 4.09 日平均 23082807 1.36E-02 2.00E-01 4.09 日平均 2309050 8.29E-03 2.00E-01 4.09 日平均 2309050 6.43E-04 8.00E-02 0.25 日平均 2309050 6.43E-04 8.00E-02 0.26 日平均 2309050 6.43E-04 0.0E-02 0.08 日平均 2309050 6.

	年平均	平均值	1.77E-04	2.00E-01	0.09	达标
T-17-1-1	日平均	230113	6.13E-03	3.00E-01	2.04	达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达
下坑村	年平均	平均值	3.75E-04	2.00E-01	0.19	达标
1 12-44	日平均	230411	8.47E-03	3.00E-01	2.82	达标
上坑村	年平均	平均值	3.17E-04	2.00E-01	0.16	达标
ا ا رسد سر	日平均	230203	3.31E-03	3.00E-01	1.1	达标
后郭村	年平均	平均值	2.69E-04	2.00E-01	0.13	达标
그스 스 ㅁ I. I.	日平均	231002	3.65E-03	3.00E-01	1.22	达标
前郭村	年平均	平均值	2.94E-04	2.00E-01	0.15	达标
VH-707 4-4	日平均	231003	4.81E-03	3.00E-01	1.6	达标
港溪村	年平均	平均值	4.08E-04	2.00E-01	0.2	达标
W + ++	日平均	230203	4.13E-03	3.00E-01	1.38	达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达
溪东村	年平均	平均值	2.18E-04	2.00E-01	0.11	达标
7 261 4-4	日平均	230422	4.23E-03	3.00E-01	1.41	达标
下谢村	年平均	平均值	3.99E-04	2.00E-01	0.2	达标
.1. 42-4-4	日平均	230813	4.19E-03	3.00E-01	1.4	达标
小坑村	年平均	平均值	1.32E-04	2.00E-01	0.07	达标
てきる社	日平均	231223	5.06E-03	3.00E-01	1.69	达标
石头岙村	年平均	平均值	2.35E-04	2.00E-01	0.12	达标
下朱路村	日平均	231112	5.02E-03	3.00E-01	1.67	达标
广木岭竹	年平均	平均值	3.02E-04	2.00E-01	0.15	达标
马村	日平均	231111	4.45E-03	3.00E-01	1.48	达标
与们	年平均	平均值	2.38E-04	2.00E-01	0.12	达标
三门县实验学校	日平均	230517	2.42E-03	3.00E-01	0.81	达标达标达标标达标标标达标标标
二门安安娅子仪	年平均	平均值	7.10E-05	2.00E-01	0.04	达标
三门第二高级中学	日平均	230713	3.19E-03	3.00E-01	1.06	达达 达达达达达达
— 17 第一间级下子	年平均	平均值	1.65E-04	2.00E-01	0.08	达标
上叶小学	日平均	230113	7.64E-03	3.00E-01	2.55	达标
工时小子	年平均	平均值	3.27E-04	2.00E-01	0.16	达标
上叶实验幼儿园	日平均	230411	6.71E-03	3.00E-01	2.24	达标
工門天極幼儿四	年平均	平均值	3.24E-04	2.00E-01	0.16	达标
	日平均	230203	3.54E-03	3.00E-01	1.18	达标
一	年平均	平均值	2.56E-04	2.00E-01	0.13	达标
三门康宁医院	日平均	230914	4.09E-03	3.00E-01	1.36	达标
—11冰1区例	年平均	平均值	1.82E-04	2.00E-01	0.09	达标
公路路政管理大人	日平均	230914	4.75E-03	3.00E-01	1.58	达标
二中队	年平均	平均值	1.86E-04	2.00E-01	0.09	达标
区域最大落地浓度	日平均	230604	1.13E-01	3.00E-01	37.64	达标
区以取八倍地似及	年平均	平均值	1.30E-02	2.00E-01	6.51	达标
湘山村	1 小时	23012723	7.79E-05	1.50E-03	5.2	达标
机耳 [17] 孔[]	日平均	230705	4.13E-06	1.50E-03	0.28	达标
	1 小时	23051706	8.49E-05	1.50E-03	5.66	达标
が以と当年了	日平均	230821	4.31E-06	1.50E-03	0.29	达标
松门村	1 小时	23101419	8.59E-05	1.50E-03	5.72	达标

-	金叶村	日平均1 小时日平均1 小时	230713 23030108 230714	4.57E-06 1.24E-04	1.50E-03 1.50E-03	0.3 8.24	达标 达标
_		日平均	 			8.24	达标
-			230714	0.04E.06	i		
_	祥和村	1 小时		9.04E-06	1.50E-03	0.6	达标
_	1 +		23020920	9.26E-05	1.50E-03	6.17	达标
_		日平均	230713	6.84E-06	1.50E-03	0.46	达标
_	고17:11	1 小时	23041307	1.80E-04	1.50E-03	11.98	达标
	下坑村	日平均	230113	9.53E-06	1.50E-03	0.64	达标
	나눔놗	1 小时	23041107	1.86E-04	1.50E-03	12.37	达标
	上坑村	日平均	230411	1.23E-05	1.50E-03	0.82	达标
	后郭村	1 小时	23032119	9.67E-05	1.50E-03	6.45	达标
	/口 孙门	日平均	230203	6.27E-06	1.50E-03	0.42	达标
	松	1 小时	23032119	1.06E-04	1.50E-03	7.08	达标达标达标达标达标达标
	前郭村	日平均	231002	6.75E-06	1.50E-03	0.45	达标
	洪 溪 杜	1 小时	23082307	1.01E-04	1.50E-03	6.71	达标
<i>Ŀ</i> Ь → _	港溪村	日平均	231003	9.08E-06	1.50E-03	0.61	达标
格及 世化	溪左村	1 小时	23051022	8.75E-05	1.50E-03	5.83	达标
其化 合物 -	溪东村	日平均	230203	7.80E-06	1.50E-03	0.52	达标
百物	下进材	1 小时	23040302	8.91E-05	1.50E-03	5.94	达标
	下谢村	日平均	230422	7.68E-06	1.50E-03	0.51	达标
	小坑村	1 小时	23011804	8.95E-05	1.50E-03	5.97	达标
	ク・タレイツ	日平均	230813	7.85E-06	1.50E-03	0.52	达标
	T N 乔杜	1 小时	23081607	9.96E-05	1.50E-03	6.64	达标
	石头岙村	日平均	231223	9.40E-06	1.50E-03	0.63	达标
	下朱路村	1 小时	23121004	1.01E-04	1.50E-03	6.72	达达达达达达达达达达达达达达达达达达达
	广木岭门	日平均	231112	8.95E-06	1.50E-03	0.6	达标
	马村 -	1 小时	23011208	1.71E-04	1.50E-03	11.39	达标
	→ 1 11	日平均	231111	8.42E-06	1.50E-03	0.56	达标
	三门县实验学校	1 小时	23071203	8.98E-05	1.50E-03	5.99	达标
	二门公关巡子仪	日平均	230712	3.77E-06	1.50E-03	0.25	达标
_	三门第二高级中学	1 小时	23042207	1.10E-04	1.50E-03	7.36	达标
	—11/和—间级下子	日平均	230713	5.72E-06	1.50E-03	0.38	达标
	上叶小学	1 小时	23042607	1.05E-04	1.50E-03	7.02	达标
	下川 1.4.	日平均	230113	1.29E-05	1.50E-03	0.86	达标
	上叶实验幼儿园	1 小时	23041107	1.86E-04	1.50E-03	12.42	达标
	工門大型外儿四	日平均	230411	1.02E-05	1.50E-03	0.68	达标
	马娄小学	1 小时	23040222	9.83E-05	1.50E-03	6.55	达标
	つ女小子	日平均	230203	6.70E-06	1.50E-03	0.45	达标
	三门康宁医院	1 小时	23091407	1.67E-04	1.50E-03	11.12	达标
	—1 1/3K 1 1マ以	日平均	231012	7.36E-06	1.50E-03	0.49	
1/2	公路路政管理大人	1 小时	23091407	1.78E-04	1.50E-03	11.86	
	二中队	日平均	230914	7.41E-06	1.50E-03	0.49	达标
 F	区域最大落地浓度	1小时	23091407	6.18E-04	1.50E-03	41.23	
	公ශ取八倍地似 及	日平均	231007	6.00E-05	1.50E-03	4	达标
	湘山村	1 小时	23012723	7.79E-05	3.00E-03	2.6	达标

	T		1		T	Ī	
	城西村	1 小时	23051706	8.49E-05	3.00E-03	2.83	达标
	松门村	1 小时	23101419	8.59E-05	3.00E-03	2.86	达标
	金叶村	1 小时	23030108	1.24E-04	3.00E-03	4.12	达标
	祥和村	1 小时	23020920	9.26E-05	3.00E-03	3.09	达标
	下坑村	1 小时	23041307	1.80E-04	3.00E-03	5.99	达标
	上坑村	1 小时	23041107	1.86E-04	3.00E-03	6.18	达标
	后郭村	1 小时	23032119	9.67E-05	3.00E-03	3.22	达标
镍及	前郭村	1 小时	23032119	1.06E-04	3.00E-03	3.54	达标
其化	港溪村	1 小时	23082307	1.01E-04	3.00E-03	3.36	达标
合物	溪东村	1 小时	23051022	8.75E-05	3.00E-03	2.92	达标
	下谢村	1 小时	23040302	8.91E-05	3.00E-03	2.97	达标
	小坑村	1 小时	23011804	8.95E-05	3.00E-03	2.98	达标
	石头岙村	1 小时	23081607	9.96E-05	3.00E-03	3.32	达标
	下朱路村	1 小时	23121004	1.01E-04	3.00E-03	3.36	达标
	马村	1 小时	23011208	1.71E-04	3.00E-03	5.69	达标
	三门县实验学校	1 小时	23071203	8.98E-05	3.00E-03	2.99	达标
	三门第二高级中学	1 小时	23042207	1.10E-04	3.00E-03	3.68	达标
	上叶小学	1 小时	23042607	1.05E-04	3.00E-03	3.51	达标
	上叶实验幼儿园	1 小时	23041107	1.86E-04	3.00E-03	6.21	达标
	马娄小学	1 小时	23040222	9.83E-05	3.00E-03	3.28	达标
	三门康宁医院	1 小时	23091407	1.67E-04	3.00E-03	5.56	达标
-	公路路政管理大人 二中队	1 小时	23091407	1.78E-04	3.00E-03	5.93	达标
-	区域最大落地浓度	1 小时	23091407	6.18E-04	3.00E-03	20.61	达标
	湘山村	1 小时	23050501	2.29E-04	2.0	0.01	达标
	城西村	1 小时	23081907	3.75E-04	2.0	0.02	达标
	松门村	1 小时	23071223	2.58E-04	2.0	0.01	达标
	金叶村	1 小时	23091408	4.51E-04	2.0	0.02	达标
	祥和村	1 J. ⊓-}					
		1 小时	23081907	6.73E-04	2.0	0.03	达标
	下坑村	1 小时 1 小时	23081907 23091408	6.73E-04 6.81E-04	2.0 2.0		达标 达标
	下坑村 上坑村		+			0.03	
		1 小时	23091408	6.81E-04	2.0	0.03 0.03	达标
_n	上坑村	1 小时 1 小时	23091408 23090508	6.81E-04 9.91E-04	2.0	0.03 0.03 0.05	达标 达标
非甲	上坑村 后郭村	1 小时 1 小时 1 小时	23091408 23090508 23082807	6.81E-04 9.91E-04 5.11E-04	2.0 2.0 2.0	0.03 0.03 0.05 0.03	达标 达标 达标
烷总	上坑村 后郭村 前郭村	1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807	6.81E-04 9.91E-04 5.11E-04 6.68E-04	2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03	达标 达标 达标
	上坑村 后郭村 前郭村 港溪村	1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04	2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02	达标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村	1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02	达标 达标 达标 达标 达标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23081707	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02 0.02	达标 达标 达标 达标 达标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村 小坑村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23081707 23091707	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04 3.20E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02 0.02 0.02	达标 达标 达标 达标 达标 达标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村 小坑村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23081707 23091707 23081607	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04 3.20E-04 5.86E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03	达标 达标 达标 达标 达标 达标 达标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村 小坑村 石头岙村 下朱路村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23091707 23091707 23081607 23100808	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04 3.20E-04 5.86E-04 3.34E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02	达标 达标 达标 达标标标标标标标 达标标标标标标标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村 小坑村 石头岙村 下朱路村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23081707 23091707 23081607 23100808 23081607	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04 3.20E-04 5.86E-04 4.41E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.03	达标 达标 达标 达标 达标标 达标标标标标标标标标标标标标标标标标
烷总	上坑村 后郭村 前郭村 港溪村 溪东村 下谢村 小坑村 石头岙村 下朱路村 马村	1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时 1 小时	23091408 23090508 23082807 23082807 23082307 23091807 23091707 23091707 23081607 23100808 23081607 23081907	6.81E-04 9.91E-04 5.11E-04 6.68E-04 4.63E-04 3.30E-04 3.42E-04 3.20E-04 5.86E-04 3.34E-04 4.41E-04 2.90E-04	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.03 0.03 0.05 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03	达

马娄小学	1 小时	23082807	5.13E-04	2.0	0.03	达标
三门康宁医院	1 小时	23080107	5.94E-04	2.0	0.03	达标
公路路政管理大人 二中队	1 小时	23080107	6.57E-04	2.0	0.03	达标
区域最大落地浓度	1 小时	23070321	3.42E-02	2.0	1.71	达标

本项目新增污染源正常排放下污染物短期浓度贡献值的最大浓度占标率 $\leq 100\%$,氟化物、铬及其化合物、镍及其化合物、 SO_2 、 NO_2 、非甲烷总烃小时最大落地浓度占标率分别为 92.66%、41.23%、20.61%、3.79%、70.87%、1.71%; 二噁英、氟化物、铬及其化合物、 PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 、TSP 日均最大落地浓度占标率分别为 19.2%、22.16%、4.0%、37.79%、37.79%、2.21%、30.99%和 37.64%。本项目新增污染源正常排放下污染物年均浓度贡献值的最大浓度占标率 $\leq 30\%$,二噁英、 PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 、TSP 年均最大落地浓度占标率分别为 12.8%、9.73%、9.73%、1.55%、17.36%和 6.51%。

2、新增污染源叠加在建、拟建污染源及背景浓度占标率

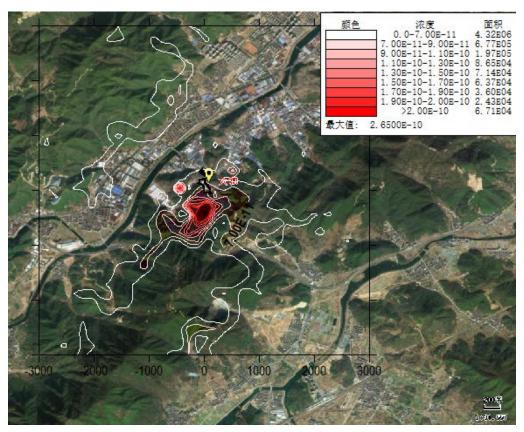
叠加现状监测浓度和其他在建、拟建污染源后,预测结果见表 7-50。

表7-50 叠加后环境质量浓度预测结果

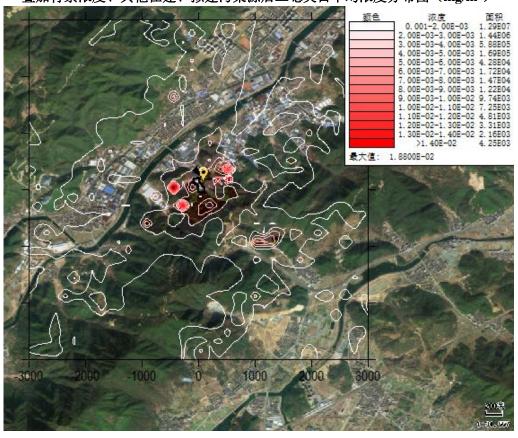
污染	预测点	平均时段	贡献值(mg/m³)	现状浓度	叠加后浓度	占标	是否
物	1.火火 点	十均的权	贝魞恒(mg/m)	$/(mg/m^3)$	$/(mg/m^3)$	率%	超标
	湘山村	日平均	3.72E-12	3.50E-11	3.87E-11	3.2	达标
	城西村	日平均	3.44E-12	3.50E-11	3.84E-11	3.2	达标
	松门村	日平均	4.19E-12	3.50E-11	3.92E-11	3.3	达标
	金叶村	日平均	8.08E-12	3.50E-11	4.31E-11	3.6	达标
	祥和村	日平均	6.52E-12	3.50E-11	4.15E-11	3.5	达标
	下坑村	日平均	7.39E-12	3.50E-11	4.24E-11	3.5	达标
	上坑村	日平均	1.01E-11	3.50E-11	4.51E-11	3.8	达标
	后郭村	日平均	4.92E-12	3.50E-11	3.99E-11	3.3	达标
	前郭村	日平均	6.18E-12	3.50E-11	4.12E-11	3.4	达标
	港溪村	日平均	7.21E-12	3.50E-11	4.22E-11	3.5	达标
	溪东村	日平均	6.05E-12	3.50E-11	4.10E-11	3.4	达标
二噁	下谢村	日平均	6.12E-12	3.50E-11	4.11E-11	3.4	达标
英	小坑村	日平均	6.05E-12	3.50E-11	4.10E-11	3.4	达标
	石头岙村	日平均	7.81E-12	3.50E-11	4.28E-11	3.6	达标
	下朱路村	日平均	7.12E-12	3.50E-11	4.21E-11	3.5	达标
	马村	日平均	7.10E-12	3.50E-11	4.21E-11	3.5	达标
	三门县实验学校	日平均	2.98E-12	3.50E-11	3.80E-11	3.2	达标
	三门第二高级中学	日平均	5.12E-12	3.50E-11	4.01E-11	3.3	达标
	上叶小学	日平均	9.99E-12	3.50E-11	4.50E-11	3.8	达标
	上叶实验幼儿园	日平均	8.45E-12	3.50E-11	4.35E-11	3.6	达标
	马娄小学	日平均	5.24E-12	3.50E-11	4.02E-11	3.4	达标
	三门康宁医院	日平均	5.67E-12	3.50E-11	4.07E-11	3.4	达标
	公路路政管理大人 二中队	日平均	5.88E-12	3.50E-11	4.09E-11	3.4	达标

	区域最大落地浓度	 日平均	2.30E-10	3.50E-11	2.65 E-10	22.1	达标
	Mer I J. J.	1 小时	5.46E-04	2.50E-04	7.96E-04	3.98	达标
	湘山村	日平均	3.09E-05	4.30E-04	4.61E-04	6.58	达标
	147741	1 小时	5.94E-04	2.50E-04	8.44E-04	4.22	达标
	城西村 -	日平均	3.06E-05	4.30E-04	4.61E-04	6.58	达标
	LA 27 L.L	1 小时	6.01E-04	2.50E-04	8.51E-04	3.98 6.58 4.22 6.58 4.25 6.64 5.58 7.11 4.49 6.89 7.64 7.1 7.8 7.4 4.64 6.77 4.97 6.87 5.08 7.06 4.31 6.93 4.37 6.92 4.38 6.93 5.37 7.11 4.78 7.05	达标
	松门村	日平均	3.45E-05	4.30E-04	4.64E-04	6.64	达标
	V 11 1-1	1 小时	8.66E-04	2.50E-04	1.12E-03	7.11 4.49 6.89 7.64 7.1 7.8 7.4 4.64 6.77 4.97 6.87 5.08 7.06 4.31 6.93	达标
	金叶村	日平均	6.75E-05	4.30E-04	4.97E-04	7.11	达标
	} *	1 小时	6.48E-04	2.50E-04	8.98E-04	4.49	达标
	祥和村 -	日平均	5.26E-05	4.30E-04	4.83E-04	6.89	达标
	구남 -	1 小时	1.28E-03	2.50E-04	1.53E-03	7.64	达标
	下坑村	日平均	6.69E-05	4.30E-04	4.97E-04	7.1	达标
	 上坑村 	1 小时	1.31E-03	2.50E-04	1.56E-03	7.64 达标 7.1 达标 7.8 达标 7.8 达标 4.64 达标 4.67 达标 4.97 达标 6.87 达标 5.08 达标 7.06 达标 4.31 达标 4.37 达标 4.37 达标	达标
	ユーグレイブ	日平均	8.83E-05	4.30E-04	5.18E-04	7.4	达标
	 后郭村	1 小时	6.77E-04	2.50E-04	9.27E-04	4.64	达标
) ^[] 70 70 71	日平均	4.42E-05	4.30E-04	4.74E-04	6.77	达标
	前郭村	1 小时	7.44E-04	2.50E-04	9.94E-04	4.97	达标
	ዘበ	日平均	5.09E-05	4.30E-04	4.81E-04	6.87	达标
	 港溪村	1 小时	7.67E-04	2.50E-04	1.02E-03	5.08	达标
	他换们	日平均	6.44E-05	4.30E-04	4.94E-04	7.06	达标
氟化	 溪东村 	1 小时	6.13E-04	2.50E-04	8.63E-04	4.31	达标
物	(关示打)	日平均	5.48E-05	4.30E-04	4.85E-04	6.93	达标
1/23	下谢村	1 小时	6.24E-04	2.50E-04	8.74E-04	4.37	达标
	1. (2) 4.1	日平均	5.45E-05	4.30E-04	4.85E-04	6.92	达标
	 小坑村	1 小时	6.27E-04	2.50E-04	8.77E-04	4.38	达标
	4.9041	日平均	5.50E-05	4.30E-04	4.85E-04	6.93	达标
	石头岙村 -	1 小时	8.24E-04	2.50E-04	1.07E-03	5.37	达标
	有人四有	日平均	6.79E-05	4.30E-04	4.98E-04	5.08 7.06 4.31 6.93 4.37 6.92 4.38 6.93 5.37 7.11 4.78 7.05 7.23 6.99	达标
	下朱路村	1 小时	7.06E-04	2.50E-04	9.56E-04	4.78	达标
	1 2/4411	日平均	6.35E-05	4.30E-04	4.93E-04	7.05	达标
	- 马村	1 小时	1.20E-03	2.50E-04	1.45E-03	7.23	达标
	313	日平均	5.93E-05	4.30E-04	4.89E-04	6.99	达标
	 三门县实验学校	1 小时	6.29E-04	2.50E-04	8.79E-04	4.39	达标
		日平均	2.67E-05	4.30E-04	4.57E-04	6.52	达标
	三门第二高级中学	1 小时	8.08E-04	2.50E-04	1.06E-03	5.29	达标
		日平均	4.27E-05	4.30E-04	4.73E-04	6.75	达标
	上叶小学	1 小时	7.49E-04	2.50E-04	9.99E-04	4.99	达标
		日平均	9.05E-05	4.30E-04	5.21E-04	7.44	达标
	 上叶实验幼儿园	1 小时	1.32E-03	2.50E-04	1.57E-03	7.86	达标
		日平均	7.37E-05	4.30E-04	5.04E-04	7.2	达标
	马娄小学 -	1 小时	6.88E-04	2.50E-04	9.38E-04	4.69	达标
		日平均	4.72E-05	4.30E-04	4.77E-04	6.82	达标
	三门康宁医院	1 小时	1.19E-03	2.50E-04	1.44E-03	7.18	达标

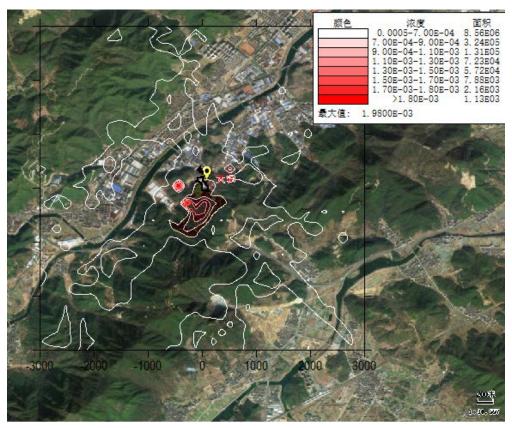
		日平均	5.15E-05	4.30E-04	4.82E-04	6.88	达标
	公路路政管理大人	1 小时	1.26E-03	2.50E-04	1.51E-03	7.56	达标
	二中队	日平均	5.25E-05	4.30E-04	4.83E-04	6.89	达标
		1 小时	1.85E-02	2.50E-04	1.88E-02	93.91	达标
	区域最大落地浓度	日平均	1.55E-03	4.30E-04	1.98E-03	28.31	达标
		保证率日均值	6.94E-04	7.80E-02	7.87E-02	52.46	达标
	湘山村	年平均	1.12E-04	4.00E-02	4.01E-02	57.3	达标
	1011	保证率日均值	4.10E-04	7.80E-02	7.84E-02	52.27	达标
	城西村	年平均	8.57E-05	4.00E-02	4.01E-02	57.27	达标
	TV 5-1 TT	保证率日均值	7.51E-04	7.80E-02	7.88E-02	52.5	达标
	松门村	年平均	1.26E-04	4.00E-02	4.01E-02	57.32	达标
	V 41 74	保证率日均值	9.24E-04	7.80E-02	7.89E-02	52.62	达标
	金叶村	年平均	1.73E-04	4.00E-02	4.02E-02	57.39	达标
	祥和村	保证率日均值	8.65E-04	7.80E-02	7.89E-02	52.58	达标
	作于不可不了	年平均	1.74E-04	4.00E-02	4.02E-02	57.39	达标
	工持料	保证率日均值	1.36E-03	7.80E-02	7.94E-02	52.91	达标
	下坑村	年平均	2.89E-04	4.00E-02	4.03E-02	57.56	达标
	上坑村	保证率日均值	1.13E-03	7.80E-02	7.91E-02	52.75	达标
	エングレイで	年平均	2.81E-04	4.00E-02	4.03E-02	57.54	达标
	后郭村	保证率日均值	1.52E-03	7.80E-02	7.95E-02	53.01	达标
	\U 464.1	年平均	4.71E-04	4.00E-02	4.05E-02	57.39 3 52.91 3 57.56 3 57.54 3 57.54 3 57.82 3 57.82 3 57.64 3 53.69 3 59.23 3 58.07 3	达标
	前郭村	保证率日均值	1.23E-03	7.80E-02	7.92E-02	52.82	达标
	un 4.64.1	年平均	3.50E-04	4.00E-02	4.03E-02	57.64	达标
	港溪村	保证率日均值	2.54E-03	7.80E-02	8.05E-02	53.69	达标
PM_{10}	121天/17	年平均	1.46E-03	4.00E-02	4.15E-02	59.23	达标
	溪东村	保证率日均值	1.96E-03	7.80E-02	8.00E-02		达标
	0001411	年平均	6.52E-04	4.00E-02	4.07E-02	58.07	达标
	下谢村	保证率日均值	1.99E-03	7.80E-02	8.00E-02	1	
	1 841411	年平均	8.70E-04	4.00E-02	4.09E-02	58.39	达标
	小坑村	保证率日均值	7.30E-04	7.80E-02	7.87E-02	52.49	
	1 2011	年平均	1.15E-04	4.00E-02	4.01E-02	57.31	达标
	石头岙村	保证率日均值	9.77E-04	7.80E-02	7.90E-02	53.33 58.39 52.49 57.31	达标
	HOVE 14	年平均	1.83E-04	4.00E-02	4.02E-02		达标
	下朱路村	保证率日均值	9.48E-04	7.80E-02	7.89E-02	52.63	达标
	1 /100 H 14	年平均	2.26E-04	4.00E-02	4.02E-02	57.47	达标
	马村	保证率日均值	1.18E-03	7.80E-02	7.92E-02	52.78	达标
	* 1 *	年平均	2.01E-04	4.00E-02	4.02E-02	57.43	
	三门县实验学校	保证率日均值	4.02E-04	7.80E-02	7.84E-02	52.27	达标
		年平均	7.42E-05	4.00E-02	4.01E-02	57.25	
	三门第二高级中学	保证率日均值	8.24E-04	7.80E-02	7.88E-02	52.55	
	, , , , , , ,	年平均	1.30E-04	4.00E-02	4.01E-02	57.33	
	上叶小学	保证率日均值	1.09E-03	7.80E-02	7.91E-02	52.73	达标
		年平均	2.53E-04	4.00E-02	4.03E-02	57.5	达标
	上叶实验幼儿园	保证率日均值	1.19E-03	7.80E-02	7.92E-02	52.79	达标

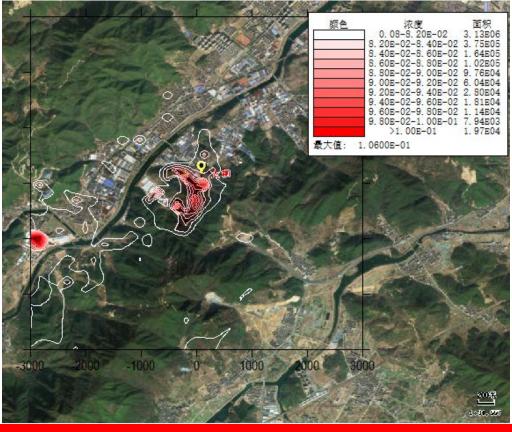

年平均	02 52.89 02 57.7 02 52.57 02 57.48	达标 达标
写変小字 年平均 3.89E-04 4.00E-02 4.04E-1	02 57.7 02 52.57 02 57.48	达标 达标
日本平均	02 52.57 02 57.48	达标
三门康宁医院 年平均 2.39E-04 4.00E-02 4.02E-0 公路路政管理大人二中队 保证率日均值 9.52E-04 7.80E-02 7.90E-0 区域最大落地浓度 保证率日均值 2.46E-04 4.00E-02 4.02E-0 相山村 保证率日均值 2.46E-04 4.00E-02 4.02E-0 相山村 保证率日均值 3.49E-04 4.60E-02 4.63E-0 堆平均 5.63E-05 2.30E-02 2.31E-0 堆面村 保证率日均值 2.09E-04 4.60E-02 4.62E-0 堆平均 4.33E-05 2.30E-02 2.30E-0 松门村 保证率日均值 3.76E-04 4.60E-02 4.64E-0 华平均 6.34E-05 2.30E-02 2.31E-0 保证率日均值 4.62E-04 4.60E-02 4.65E-0 年平均 8.78E-05 2.30E-02 2.31E-0 保证率日均值 6.82E-04 4.60E-02 4.67E-0 年平均 1.45E-04 2.30E-02 2.31E-0 年平均 1.42E-04 4.60E-02 4.68E-0 年平均 1.42E-04 4.60E-02 4.68E-0 年平均 1.42E-04 2.30E-02 2.31E-0 <tr< td=""><td>02 57.48</td><td>1</td></tr<>	02 57.48	1
公路路政管理大人		汏标
正規及大落地浓度 年平均 2.46E-04 4.00E-02 4.02E-02 関連大落地浓度 保证率日均值 2.82E-02 7.80E-02 1.06E-02 地面村 保证率日均值 3.49E-04 4.60E-02 4.63E-02 松门村 保证率日均值 2.09E-04 4.60E-02 4.62E-04 全中村 保证率日均值 4.62E-04 4.60E-02 2.30E-02 2.31E-05 全中村 保证率日均值 4.42E-04 4.60E-02 4.65E-04 中市村 保证率日均值 6.82E-04 4.60E-02 2.31E-05 中市村 保证率日均值 6.82E-04 4.60E-02 4.66E-02 中市均 4.60E-02 4.60E-02 4.66E-02 4.66E-02 2.31E-03 4.60E-02 4.66E-02 4.66E-02 4.66E-02 <td>12 52 62</td> <td>1</td>	12 52 62	1
区域最大落地浓度 保证率目均值 2.82E-02 7.80E-02 1.06E-02 湘山村 保证率目均值 3.49E-04 4.60E-02 4.63E-0 堆工率均 5.63E-05 2.30E-02 2.31E-0 城西村 保证率目均值 2.09E-04 4.60E-02 4.62E-0 堆下均 4.33E-05 2.30E-02 2.30E-02 松门村 保证率目均值 3.76E-04 4.60E-02 4.64E-0 堆平均 6.34E-05 2.30E-02 2.31E-0 金叶村 保证率目均值 4.62E-04 4.60E-02 4.65E-0 车平均 8.72E-05 2.30E-02 2.31E-0 保证率目均值 4.42E-04 4.60E-02 4.64E-0 车平均 8.78E-05 2.30E-02 2.31E-0 保证率目均值 6.82E-04 4.60E-02 4.67E-0 车平均 1.45E-04 2.30E-02 2.31E-0 上坑村 保证率日均值 5.65E-04 4.60E-02 4.66E-0 年平均 1.42E-04 2.30E-02 2.31E-0 保证率日均值 7.77E-04 4.60E-02 2.32E-0		
区域最大落地球度 年平均 1.02E-02 4.00E-02 5.02E-02 湘山村 保证率日均值 3.49E-04 4.60E-02 4.63E-03 城西村 保证率日均值 2.09E-04 4.60E-02 4.62E-04 城西村 保证率日均值 2.09E-04 4.60E-02 2.30E-02 松门村 保证率日均值 3.76E-04 4.60E-02 4.64E-04 金叶村 保证率日均值 4.62E-04 4.60E-02 4.65E-04 车平均 8.72E-05 2.30E-02 2.31E-02 样和村 保证率日均值 4.42E-04 4.60E-02 4.64E-04 车平均 8.78E-05 2.30E-02 2.31E-04 年平均 8.78E-05 2.30E-02 2.31E-04 年平均 1.45E-04 2.30E-02 2.31E-04 上坑村 保证率目均值 5.65E-04 4.60E-02 4.66E-02 车平均 1.42E-04 2.30E-02 2.31E-04 年平均 1.42E-04 2.30E-02 2.31E-04 年平均 1.27E-04 4.60E-02 4.68E-04 年平均 2.39E-04 2.30E-02 2.32E-04 株区率日均值 6.27E-04 4.60E-02)2 57.49	达标
第山村 集评項 1.02E-02 4.00E-02 5.02E-02 湘山村 保证率目均值 3.49E-04 4.60E-02 4.63E-02 城西村 保证率目均值 2.09E-04 4.60E-02 4.62E-04 堆平均 4.33E-05 2.30E-02 2.30E-02 保证率目均值 3.76E-04 4.60E-02 4.64E-04 车平均 6.34E-05 2.30E-02 2.31E-02 保证率目均值 4.62E-04 4.60E-02 4.65E-04 车平均 8.78E-05 2.30E-02 2.31E-02 保证率目均值 6.82E-04 4.60E-02 4.67E-02 车平均 1.45E-04 2.30E-02 2.31E-02 上坑村 保证率目均值 5.65E-04 4.60E-02 4.66E-02 车平均 1.42E-04 2.30E-02 2.31E-02 车平均 1.42E-04 2.30E-02 2.31E-02 年平均 1.42E-04 2.30E-02 2.32E-02 年平均 1.77E-04 4.60E-02 4.68E-02 车平均 1.77E-04 4.60E-02 4.66E-02 株溪村 年平均 1.77E-04 2.30E-02 2.32E-02	01 70.8	达标
## 日本	02 71.69	
#平均 5.63E-05 2.30E-02 2.31E-05	02 61.8	达标
坂四村 年平均 4.33E-05 2.30E-02 2.30E-04 4.60E-02 4.64E-05 4.60E-02 4.64E-05 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-05 4.60E-02 4.66E-05 4.60E-02 4.60E-	02 65.88	达标
松门村 保证率日均值 3.76E-04 4.60E-02 4.64E-0 每平均 6.34E-05 2.30E-02 2.31E-0 金叶村 保证率日均值 4.62E-04 4.60E-02 4.65E-0 每平均 8.72E-05 2.30E-02 2.31E-0 保证率日均值 4.42E-04 4.60E-02 4.64E-0 年平均 8.78E-05 2.30E-02 2.31E-0 保证率日均值 6.82E-04 4.60E-02 4.67E-0 年平均 1.45E-04 2.30E-02 2.31E-0 保证率日均值 5.65E-04 4.60E-02 4.66E-0 年平均 1.42E-04 2.30E-02 2.31E-0 保证率日均值 7.77E-04 4.60E-02 4.68E-0 年平均 2.39E-04 2.30E-02 2.32E-0 保证率日均值 6.27E-04 4.60E-02 4.66E-0 年平均 1.77E-04 2.30E-02 2.32E-0 株区率日均值 1.27E-03 4.60E-02 4.73E-0 保证率日均值 7.36E-04 2.30E-02 2.37E-0 保证率日均值 9.92E-04 4.60E-02 4.70E-0	02 61.61	达标
本田村 年平均 6.34E-05 2.30E-02 2.31E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.65E-04 4.60E-02 4.64E-04 4.60E-02 4.64E-04 4.60E-02 4.64E-04 4.60E-02 4.64E-04 4.60E-02 4.64E-04 4.60E-02 4.67E-04 4.60E-02 4.67E-04 4.60E-02 4.66E-02 4.66E-04 4.60E-02 4.66E-04 4.60E-02 4.66E-04 4.60E-02 4.66E-04 4.60E-02 4.68E-04 4.60E-02 4.68E-04 4.60E-02 4.66E-04 4.60E-02 4.73E-04 4.60E-	02 65.84	达标
#平均 6.34E-05 2.30E-02 2.31E-06	02 61.83	达标
## 年平均 8.72E-05 2.30E-02 2.31E-04 4.60E-02 4.64E-04 4.60E-02 4.64E-04 年平均 8.78E-05 2.30E-02 2.31E-04 4.60E-02 4.64E-04 年平均 8.78E-05 2.30E-02 2.31E-04 4.60E-02 4.67E-04 4.60E-02 4.66E-04 4.60E-02 4.73E-04 4.	02 65.9	达标
日本平均 8.72E-05 2.30E-02 2.31E-05 2.30E-02 2.31E-05 4.42E-04 4.60E-02 4.64E-05 4.42E-04 4.60E-02 4.64E-05 4.60E-02 4.67E-05 4.60E-02 4.67E-05 4.60E-02 4.67E-05 4.60E-02 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.68E-05 4.60E-02 4.68E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.66E-05 4.60E-02 4.60E-02 4.60E-02 4.60E-02 4.60E-02 4.73E-05 4.60E-02	02 61.95	达标
存和村 年平均 8.78E-05 2.30E-02 2.31E-0 下坑村 保证率日均值 6.82E-04 4.60E-02 4.67E-0 年平均 1.45E-04 2.30E-02 2.31E-0 上坑村 保证率日均值 5.65E-04 4.60E-02 4.66E-0 年平均 1.42E-04 2.30E-02 2.31E-0 保证率日均值 7.77E-04 4.60E-02 4.68E-0 年平均 2.39E-04 2.30E-02 2.32E-0 保证率日均值 6.27E-04 4.60E-02 4.60E-02 株正率日均值 1.27E-03 4.60E-02 4.73E-0 保证率日均值 7.36E-04 2.30E-02 2.37E-0 保证率日均值 9.92E-04 4.60E-02 4.70E-0	02 65.96	达标
PM2.5 2.30E-02 2.31E-02 2.31E-02 2.31E-02 F坑村 保证率日均值 6.82E-04 4.60E-02 4.67E-02 年平均 1.45E-04 2.30E-02 2.31E-02 保证率日均值 5.65E-04 4.60E-02 4.66E-02 年平均 1.42E-04 2.30E-02 2.31E-02 保证率日均值 7.77E-04 4.60E-02 4.68E-02 保证率日均值 6.27E-04 4.60E-02 4.66E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 保证率日均值 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 61.92	达标
F坑村 年平均 1.45E-04 2.30E-02 2.31E-02 上坑村 保证率日均值 5.65E-04 4.60E-02 4.66E-02 年平均 1.42E-04 2.30E-02 2.31E-02 保证率日均值 7.77E-04 4.60E-02 4.68E-02 年平均 2.39E-04 2.30E-02 2.32E-02 保证率日均值 6.27E-04 4.60E-02 4.66E-02 年平均 1.77E-04 2.30E-02 2.32E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 65.97	达标
上坑村	02 62.24	达标
上坑村 年平均 1.42E-04 2.30E-02 2.31E-02 后郭村 保证率日均值 7.77E-04 4.60E-02 4.68E-02 年平均 2.39E-04 2.30E-02 2.32E-02 保证率日均值 6.27E-04 4.60E-02 4.66E-02 年平均 1.77E-04 2.30E-02 2.32E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 66.13	达标
日本平均 1.42E-04 2.30E-02 2.31E-04	02 62.09	达标
FPM 2.39E-04 2.30E-02 2.32E-02 前郭村 保证率日均值 6.27E-04 4.60E-02 4.66E-02 年平均 1.77E-04 2.30E-02 2.32E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 66.12	达标
PM _{2.5} 第 2.39E-04 2.30E-02 2.32E-02 保证率日均值 6.27E-04 4.60E-02 4.66E-02 年平均 1.77E-04 2.30E-02 2.32E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 62.37	达标
PM _{2.5}	02 66.4	达标
PM _{2.5} 年平均 1.77E-04 2.30E-02 2.32E-02 保证率日均值 1.27E-03 4.60E-02 4.73E-02 年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 62.17	达标
港溪村 年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 66.22	达标
年平均 7.36E-04 2.30E-02 2.37E-02 保证率日均值 9.92E-04 4.60E-02 4.70E-02	02 63.03	达标
	02 67.82	达标
溪外村 大平均 2.24F 24 2.20F 22 2.20F	02 62.66	达标
年平均 3.34E-04 2.30E-02 2.33E-0	02 66.67	达标
	02 62.67	达标
下谢村 年平均 4.44E-04 2.30E-02 2.34E-0	02 66.98	达标
保证室日均值 3.70E-04 4.60E-02 4.64E-		
小坑村 年平均 5.80E-05 2.30E-02 2.31E-0		达标
保证率日均值 4.88F-04 4.60F-02 4.65F-0		
石头岙村 年平均 9.23E-05 2.30E-02 2.31E-0		达标
保证率日均值 4.74E-04 4.60E-02 4.65E-		
下朱路村 年平均 1.13E-04 2.30E-02 2.31E-0		
保证率日均值 5 90F-04 4 60F-02 4 66F-		达标
马村 年平均 1.01E-04 2.30E-02 2.31E-0		达标
保证率日均值 2 07F-04 4 60F-02 4 62F-		达标
三门县实验学校 年平均 3.75E-05 2.30E-02 2.30E-0		
三门第二高级中学 保证率日均值 4.12E-04 4.60E-02 4.64E-0		

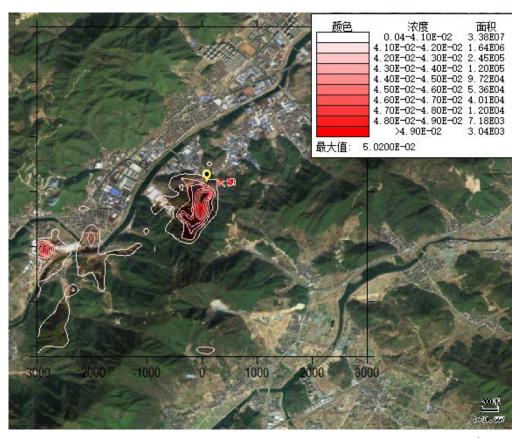
	金叶村	保证率日均值	4.05E-05	6.00E-03	6.04E-03	4.03	达标
	平山 小	年平均	7.85E-06	5.00E-03	5.01E-03	8.35	达标
) Y	保证率日均值	8.90E-05	6.00E-03	6.09E-03	4.06	达标
	祥和村	年平均	2.37E-05	5.00E-03	5.02E-03	8.37	达标
	나하다	保证率日均值	6.20E-05	6.00E-03	6.06E-03	4.04	达标
	下坑村	年平均	1.50E-05	5.00E-03	5.01E-03	8.36	达标
	나는 낚	保证率日均值	7.07E-05	6.00E-03	6.07E-03	4.05	达标
	上坑村	年平均	2.08E-05	5.00E-03	5.02E-03	8.37	达标
	广部	保证率日均值	6.21E-05	6.00E-03	6.06E-03	4.04	达标
	后郭村	年平均	1.06E-05	5.00E-03	5.01E-03	8.35	达标
	共 却壮	保证率日均值	7.41E-05	6.00E-03	6.07E-03	4.05	达标
	前郭村	年平均	1.70E-05	5.00E-03	5.02E-03	8.36	达标
	开2位14	保证率日均值	5.32E-05	6.00E-03	6.05E-03	4.04	达标
	港溪村	年平均	1.09E-05	5.00E-03	5.01E-03	8.35	达标
	<i>巡 大</i> 14	保证率日均值	4.31E-05	6.00E-03	6.04E-03	4.03	达标
	溪东村	年平均	6.88E-06	5.00E-03	5.01E-03	8.34	达标
	T-244.4-4	保证率日均值	3.89E-05	6.00E-03	6.04E-03	4.03	达标
	下谢村	年平均	8.85E-06	5.00E-03	5.01E-03	8.35	达标
	1. 4-4-4	保证率日均值	3.02E-05	6.00E-03	6.03E-03	4.02	达标
	小坑村	年平均	4.43E-06	5.00E-03	5.00E-03	8.34	达标
	アッチ++	保证率日均值	2.86E-05	6.00E-03	6.03E-03	4.02	达标
	石头岙村	年平均	6.70E-06	5.00E-03	5.01E-03	8.34	达标
	T /t 1/2 + 1	保证率日均值	2.95E-05	6.00E-03	6.03E-03	4.02	达标
	下朱路村	年平均	6.80E-06	5.00E-03	5.01E-03	8.34	达标
	П ++	保证率日均值	3.76E-05	6.00E-03	6.04E-03	4.03	达标
	马村	年平均	6.88E-06	5.00E-03	5.01E-03	8.34	达标
	二门目录协兴坛	保证率日均值	2.17E-05	6.00E-03	6.02E-03	4.01	达标
	三门县实验学校	年平均	2.72E-06	5.00E-03	5.00E-03	8.34	达标
	三门第二高级中学	保证率日均值	2.99E-05	6.00E-03	6.03E-03	4.02	达标
	二门另一同级中子	年平均	5.06E-06	5.00E-03	5.01E-03	8.34	达标
	上叶小学	保证率日均值	5.37E-05	6.00E-03	6.05E-03	4.04	达标
	上門小子	年平均	1.30E-05	5.00E-03	5.01E-03	8.35	达标
	上叶实验幼儿园	保证率日均值	6.19E-05	6.00E-03	6.06E-03	4.04	达标
	工門安型幼儿四	年平均	1.66E-05	5.00E-03	5.02E-03	8.36	达标
	马娄小学	保证率日均值	6.39E-05	6.00E-03	6.06E-03	4.04	达标
	一	年平均	1.13E-05	5.00E-03	5.01E-03	8.35	达标
	三门康宁医院	保证率日均值	6.16E-05	6.00E-03	6.06E-03	4.04	达标
	二口承	年平均	1.34E-05	5.00E-03	5.01E-03	8.36	达标
	公路路政管理大人	保证率日均值	6.15E-05	6.00E-03	6.06E-03	4.04	达标
	二中队	年平均	1.51E-05	5.00E-03	5.02E-03	8.36	达标
	心控管于染肿深度	保证率日均值	2.02E-03	6.00E-03	8.02E-03	5.35	达标
	区域最大落地浓度	年平均	9.28E-04	5.00E-03	5.93E-03	9.88	达标
NO	741 1 4 	保证率日均值	1.86E-04	4.50E-02	4.52E-02	56.48	达标
NO ₂	湘山村	年平均	2.56E-05	2.00E-02	2.00E-02	50.06	达标
					_	_	_

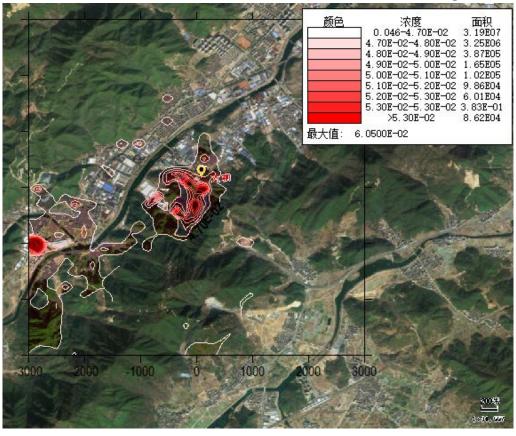

	1		T	Τ	1	
山 城西村	保证率日均值	2.00E-04	4.50E-02	4.52E-02	56.50	达标
75. 四年	年平均	2.46E-05	2.00E-02	2.00E-02	50.06	
松门村	保证率日均值	1.89E-04	4.50E-02	4.52E-02	56.49	达标
471141	年平均	3.01E-05	2.00E-02	2.00E-02	50.08	达标
金叶村	保证率日均值	3.11E-04	4.50E-02	4.53E-02	56.64	达标
並 川 小	年平均	6.04E-05	2.00E-02	2.01E-02	50.15	达标
 祥和村	保证率日均值	6.70E-04	4.50E-02	4.57E-02	57.09	达标
1+441	年平均	1.78E-04	2.00E-02	2.02E-02	50.45	达标
 下坑村	保证率日均值	4.69E-04	4.50E-02	4.55E-02	56.84	达标
1. 2.4.1	年平均	1.14E-04	2.00E-02	2.01E-02	50.28	达标
나남남	保证率日均值	5.28E-04	4.50E-02	4.55E-02	56.91	达标
上坑村	年平均	1.58E-04	2.00E-02	2.02E-02	50.39	达标
二 37.1-1	保证率日均值	4.63E-04	4.50E-02	4.55E-02	56.83	达标
后郭村	年平均	8.52E-05	2.00E-02	2.01E-02	50.21	达标
<u> </u>	保证率日均值	5.53E-04	4.50E-02	4.56E-02	56.94	达标
前郭村	年平均	1.31E-04	2.00E-02	2.01E-02	50.33	达标
A44 Novi 1. 1.	保证率日均值	4.49E-04	4.50E-02	4.54E-02	56.81	达标
港溪村	年平均	9.21E-05	2.00E-02	2.01E-02	50.23	达标
) T + 11	保证率日均值	3.84E-04	4.50E-02	4.54E-02	56.73	达标
溪东村	年平均	7.82E-05	2.00E-02	2.01E-02	50.20	达标
	保证率日均值	3.26E-04	4.50E-02	4.53E-02	56.66	达标
下谢村	年平均	8.82E-05	2.00E-02	2.01E-02	50.22	达标
1.15.11	保证率日均值	2.31E-04	4.50E-02	4.52E-02	56.54	达标
小坑村	年平均	3.47E-05	2.00E-02	2.00E-02	50.09	达标
	保证率日均值	2.16E-04	4.50E-02	4.52E-02	56.52	达标
石头岙村	年平均	5.22E-05	2.00E-02	2.01E-02	50.13	达标
T # ## L.L	保证率日均值	2.24E-04	4.50E-02	4.52E-02	56.53	达标
下朱路村	年平均	5.34E-05	2.00E-02	2.01E-02	50.13	达标
77.1.1.	保证率日均值	2.94E-04	4.50E-02	4.53E-02	56.62	达标
马村	年平均	5.35E-05	2.00E-02	2.01E-02	50.13	达标
—) [保证率日均值	1.67E-04	4.50E-02	4.52E-02	56.46	达标
三门县实验学校	年平均	2.15E-05	2.00E-02	2.00E-02	50.05	达标
	保证率日均值	2.32E-04	4.50E-02	4.52E-02	56.54	达标
三门第二高级中学	年平均	3.93E-05	2.00E-02	2.00E-02	50.10	达标
	保证率日均值	4.04E-04	4.50E-02	4.54E-02	56.76	达标
上叶小学	年平均	9.89E-05	2.00E-02	2.01E-02	50.25	达标
	保证率日均值	4.63E-04	4.50E-02	4.55E-02	56.83	达标
上叶实验幼儿园	年平均	1.26E-04	2.00E-02	2.01E-02	50.31	达标
- v	保证率日均值	4.77E-04	4.50E-02	4.55E-02	56.85	达标
马娄小学	年平均	8.97E-05	2.00E-02	2.01E-02	50.22	达标
	保证率日均值	4.62E-04	4.50E-02	4.55E-02	56.83	达标
三门康宁医院	年平均	1.04E-04	2.00E-02	2.01E-02	50.26	
公路路政管理大人	保证率日均值	4.61E-04	4.50E-02	4.55E-02	56.83	达标
二中队	年平均	1.16E-04	2.00E-02	2.01E-02	50.29	达标
- 1 17 (1 1 . 2	1.102 01	2.502.02	51_ 02	20.27	· → 1/1,

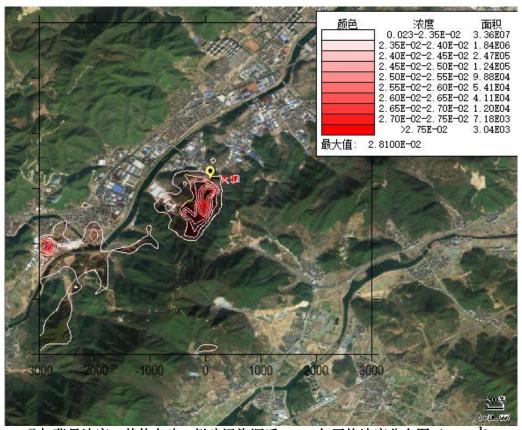
	以下自于华州外安	保证率日均值	1.51E-02	4.50E-02	6.01E-02	75.13	达标
	区域最大落地浓度	年平均	6.95E-03	2.00E-02	2.69E-02	67.36	达标
	湘山村	1 小时	7.79E-05	2.50E-08	7.80E-05	5.2	达标
	城西村	1 小时	8.49E-05	2.50E-08	8.49E-05	5.66	达标
	松门村	1 小时	8.59E-05	2.50E-08	8.59E-05	5.73	达标
	金叶村	1 小时	1.24E-04	2.50E-08	1.24E-04	8.25	达标
	祥和村	1 小时	9.26E-05	2.50E-08	9.26E-05	6.18	达标
	下坑村	1 小时	1.80E-04	2.50E-08	1.80E-04	11.98	达标
	上坑村	1 小时	1.86E-04	2.50E-08	1.86E-04	12.37	达标
	后郭村	1 小时	9.67E-05	2.50E-08	9.68E-05	6.45	达标
	前郭村	1 小时	1.06E-04	2.50E-08	1.06E-04	7.08	达标
	港溪村	1 小时	1.01E-04	2.50E-08	1.01E-04	6.71	达标
	溪东村	1 小时	8.75E-05	2.50E-08	8.75E-05	5.84	达标
铬及	下谢村	1 小时	8.91E-05	2.50E-08	8.91E-05	5.94	达标
其化 合物	小坑村	1 小时	8.95E-05	2.50E-08	8.95E-05	5.97	达标
	石头岙村	1 小时	9.96E-05	2.50E-08	9.96E-05	6.64	达标
	下朱路村	1 小时	1.01E-04	2.50E-08	1.01E-04	6.73	达标
	马村	1 小时	1.71E-04	2.50E-08	1.71E-04	11.39	达标
	三门县实验学校	1 小时	8.98E-05	2.50E-08	8.98E-05	5.99	达标
	三门第二高级中学	1 小时	1.10E-04	2.50E-08	1.10E-04	7.36	达标
	上叶小学	1 小时	1.05E-04	2.50E-08	1.05E-04	7.02	达标
	上叶实验幼儿园	1 小时	1.86E-04	2.50E-08	1.86E-04	12.42	达标
	马娄小学	1 小时	9.83E-05	2.50E-08	9.83E-05	6.56	达标
	三门康宁医院	1 小时	1.67E-04	2.50E-08	1.67E-04	11.12	达标
	公路路政管理大人 二中队	1 小时	1.78E-04	2.50E-08	1.78E-04	11.87	达标
	区域最大落地浓度	1小时	6.18E-04	2.50E-08	6.18E-04	41.23	达标
	湘山村	1 小时	7.79E-05	1.70E-08	7.79E-05	2.60	达标
	城西村	1 小时	8.49E-05	1.70E-08	8.49E-05	2.83	达标
	松门村	1 小时	8.59E-05	1.70E-08	8.59E-05	2.86	达标
	金叶村	1 小时	1.24E-04	1.70E-08	1.24E-04	4.12	达标
	祥和村	1 小时	9.26E-05	1.70E-08	9.26E-05	3.09	达标
	下坑村	1 小时	1.80E-04	1.70E-08	1.80E-04	5.99	达标
	上坑村	1 小时	1.86E-04	1.70E-08	1.86E-04	6.18	达标
镍及	后郭村	1 小时	9.67E-05	1.70E-08	9.67E-05	3.22	达标
其化	前郭村	1 小时	1.06E-04	1.70E-08	1.06E-04	3.54	达标
合物	港溪村	1 小时	1.01E-04	1.70E-08	1.01E-04	3.36	达标
	溪东村	1 小时	8.75E-05	1.70E-08	8.75E-05	2.92	达标
	下谢村	1 小时	8.91E-05	1.70E-08	8.91E-05	2.97	达标
	小坑村	1 小时	8.95E-05	1.70E-08	8.95E-05	2.98	达标
	石头岙村	1 小时	9.96E-05	1.70E-08	9.96E-05	3.32	达标
	下朱路村	1 小时	1.01E-04	1.70E-08	1.01E-04	3.36	达标
	马村	1 小时	1.71E-04	1.70E-08	1.71E-04	5.69	达标
	三门县实验学校	1 小时	8.98E-05	1.70E-08	8.98E-05	2.99	达标

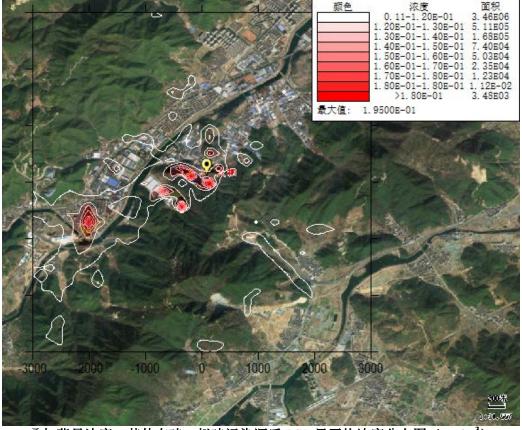

	1		_	ı	ı	1	
	三门第二高级中学	1 小时	1.10E-04	1.70E-08	1.10E-04	3.68	达标
	上叶小学	1 小时	1.05E-04	1.70E-08	1.05E-04	3.51	达标
	上叶实验幼儿园	1 小时	1.86E-04	1.70E-08	1.86E-04	6.21	达标
	马娄小学	1 小时	9.83E-05	1.70E-08	9.83E-05	3.28	达标
	三门康宁医院	1 小时	1.67E-04	1.70E-08	1.67E-04	5.56	达标
	公路路政管理大人 二中队	1小时	1.78E-04	1.70E-08	1.78E-04	5.93	达标
	区域最大落地浓度	1小时	6.18E-04	1.70E-08	6.18E-04	20.62	达标
	湘山村	1 小时	1.51E-02	0.78	7.95E-01	39.75	达标
	城西村	1 小时	1.61E-02	0.78	7.96E-01	39.8	达标
	松门村	1 小时	1.44E-02	0.78	7.94E-01	39.72	达标
	金叶村	1 小时	1.82E-02	0.78	7.98E-01	39.91	达标
	祥和村	1 小时	1.70E-02	0.78	7.97E-01	39.85	达标
	下坑村	1 小时	2.71E-02	0.78	8.07E-01	40.35	达标
	上坑村	1 小时	2.63E-02	0.78	8.06E-01	40.32	达标
	后郭村	1 小时	2.52E-02	0.78	8.05E-01	40.26	达标
	前郭村	1 小时	3.25E-02	0.78	8.12E-01	40.62	达标
	港溪村	1 小时	2.22E-02	0.78	8.02E-01	40.11	达标
	溪东村	1 小时	1.73E-02	0.78	7.97E-01	39.86	达标
非甲	下谢村	1 小时	1.62E-02	0.78	7.96E-01	39.81	达标
烷总	小坑村	1 小时	8.81E-03	0.78	7.89E-01	39.44	达标
烃	石头岙村	1 小时	1.07E-02	0.78	7.91E-01	39.54	达标
	下朱路村	1 小时	1.01E-02	0.78	7.90E-01	39.5	达标
	马村	1 小时	5.98E-03	0.78	7.86E-01	39.3	达标
	三门县实验学校	1 小时	1.73E-02	0.78	7.97E-01	39.86	达标
	三门第二高级中学	1 小时	1.48E-02	0.78	7.95E-01	39.74	达标
	上叶小学	1 小时	1.70E-02	0.78	7.97E-01	39.85	达标
	上叶实验幼儿园	1 小时	1.46E-02	0.78	7.95E-01	39.73	达标
	马娄小学	1 小时	2.61E-02	0.78	8.06E-01	40.31	达标
	三门康宁医院	1 小时	3.10E-02	0.78	8.11E-01	40.55	达标
	公路路政管理大人 二中队	1 小时	2.90E-02	0.78	8.09E-01	40.45	达标
	区域最大落地浓度	1 小时	2.37E-01	0.78	1.02		达标

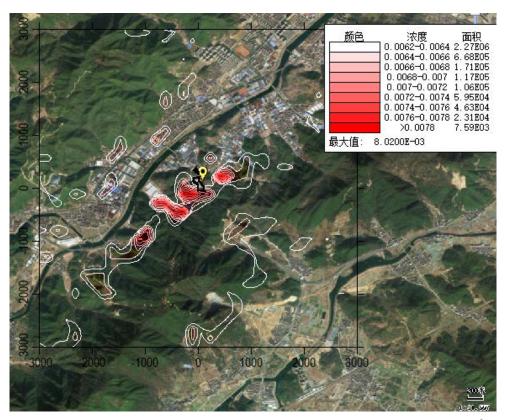

叠加背景浓度、其他在建、拟建污染源后二噁英日平均浓度分布图(mg/m^3)

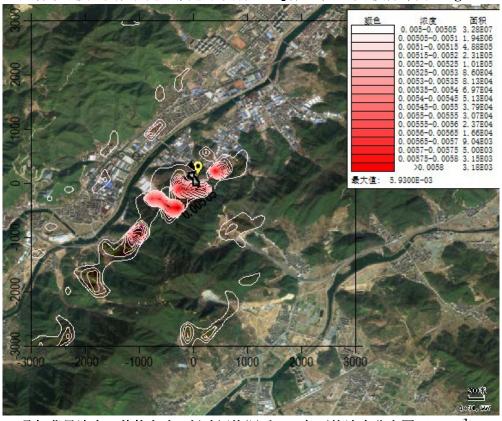

叠加背景浓度、其他在建、拟建污染源后氟化物小时平均浓度分布图(mg/m³)

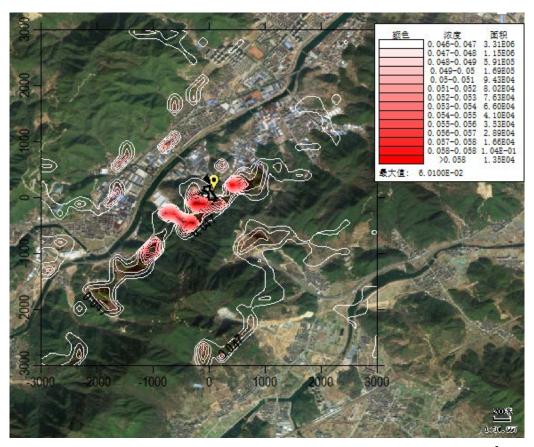

叠加背景浓度、其他在建、拟建污染源后氟化物日平均浓度分布图(mg/m^3)

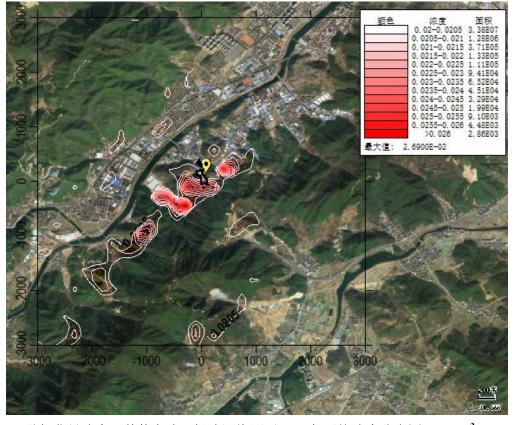

叠加背景浓度、其他在建、拟建污染源后 PM_{10} 保证率日均浓度分布图(mg/m^3)

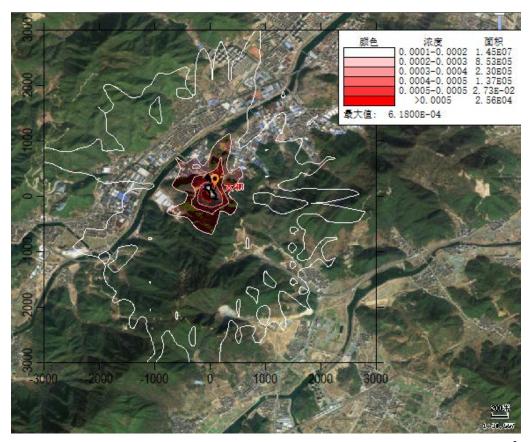

叠加背景浓度、其他在建、拟建污染源后 PM_{10} 年平均浓度分布图(mg/m^3)

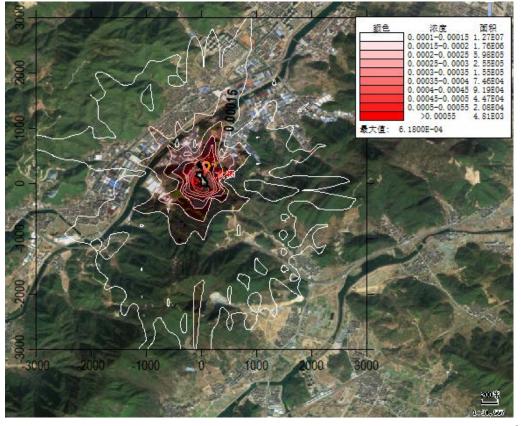

叠加背景浓度、其他在建、拟建污染源后 PM_{2.5} 保证率日均浓度分布图(mg/m³)

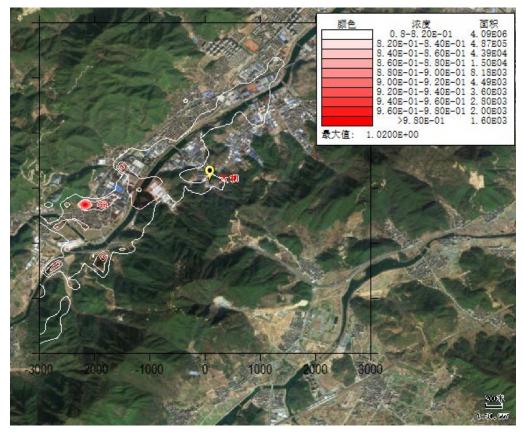

叠加背景浓度、其他在建、拟建污染源后 PM_{2.5} 年平均浓度分布图(mg/m³)


叠加背景浓度、其他在建、拟建污染源后 TSP 日平均浓度分布图(mg/m³)


叠加背景浓度、其他在建、拟建污染源后 SO_2 保证率日均浓度分布图(mg/m^3)


叠加背景浓度、其他在建、拟建污染源后 SO_2 年平均浓度分布图(mg/m^3)


叠加背景浓度、其他在建、拟建污染源后 \mathbf{NO}_2 保证率日均浓度分布图($\mathbf{mg/m}^3$)


叠加背景浓度、其他在建、拟建污染源后 NO_2 年平均浓度分布图(mg/m^3)

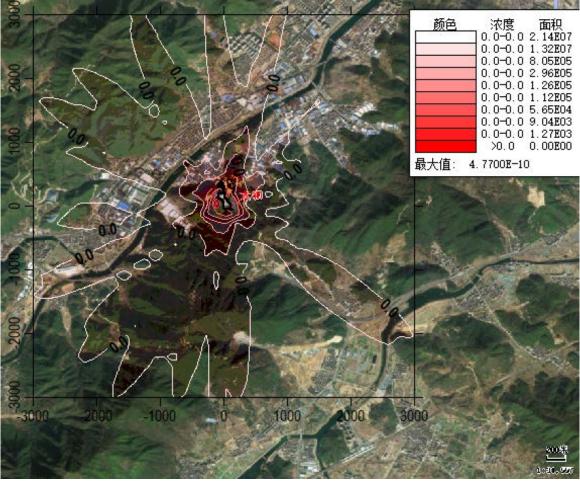
叠加背景浓度、其他在建、拟建污染源后铬及其化合物小时平均浓度分布图(mg/m^3)

叠加背景浓度、其他在建、拟建污染源后镍及其化合物小时平均浓度分布图(mg/m^3)

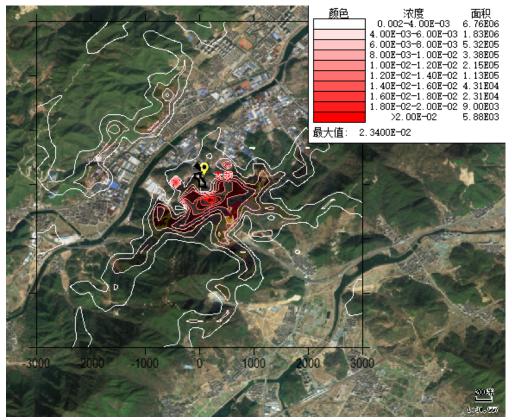
叠加背景浓度、其他在建、拟建污染源后非甲烷总烃小时平均浓度分布图(mg/m³)

叠加环境质量现状浓度及在建、拟建项目的环境影响后二噁英、氟化物、铬及其化合物、镍及其化合物、非甲烷总烃短期浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、TSP、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的保证率日平均质量浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的年平均质量浓度符合环境质量标准。

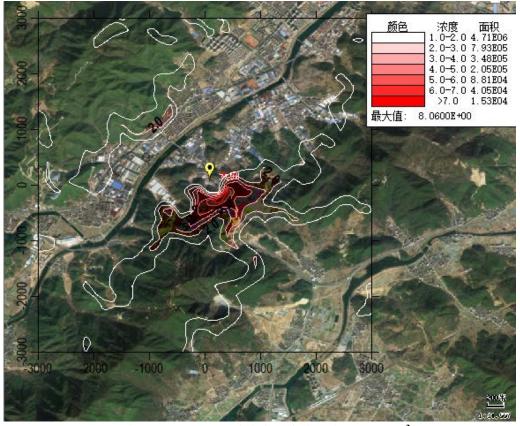
3、非正常工况预测结果

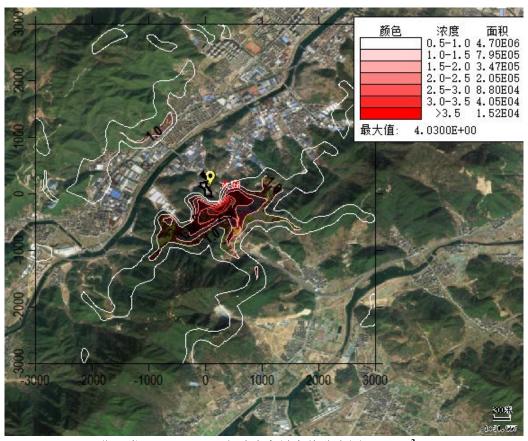

表7-51 非正常工况小时平均浓度最大值预测结果

污染 物	预测点	平均时段	最大贡献值 (mg/m³)	出现时间	占标率(%)	达标情况
	湘山村	1 小时	6.00E-11	23012723	1.67	达标
	城西村	1 小时	8.47E-11	23081907	2.35	达标
	松门村	1 小时	8.50E-11	23042207	2.36	达标
	金叶村	1 小时	1.03E-10	23091408	2.85	达标
	祥和村	1 小时	8.58E-11	23082708	2.38	达标
	下坑村	1 小时	1.50E-10	23041307	4.18	达标
二噁	上坑村	1 小时	1.50E-10	23041107	4.17	达标
英	后郭村	1 小时	9.32E-11	23090107	2.59	达标
	前郭村	1 小时	9.40E-11	23091108	2.61	达标
	港溪村	1 小时	1.24E-10	23082807	3.45	达标
	溪东村	1 小时	9.69E-11	23090107	2.69	达标
	下谢村	1 小时	9.91E-11	23082907	2.75	达标
	小坑村	1 小时	7.19E-11	23032608	2.00	达标
	石头岙村	1 小时	1.52E-10	23081607	4.23	达标


	下朱路村	1 小时	7.77E-11	23121004	2.16	达标
	马村	1 小时	1.32E-10	23011208	3.66	达标
	三门县实验学校	1 小时	6.92E-11	23071203	1.92	达标
	三门第二高级中学	1 小时	1.06E-10	23042207	2.96	达标
	上叶小学	1 小时	8.78E-11	23042607	2.44	达标
	上叶实验幼儿园	1 小时	1.55E-10	23041107	4.32	达标
	马娄小学	1 小时	1.03E-10	23090107	2.86	达标
	三门康宁医院	1 小时	1.40E-10	23091407	3.88	达标
	公路路政管理大人二中队	1 小时	1.47E-10	23091407	4.08	达标
	区域最大落地浓度	1 小时	4.77E-10	23091407	13.2	达标
	湘山村	1 小时	5.46E-04	23012723	2.73	达标
	城西村	1 小时	7.49E-04	23081907	3.74	达标
	松门村	1 小时	7.56E-04	23042207	3.78	达标
	金叶村	1 小时	8.96E-04	23091408	4.48	达标
	祥和村	1 小时	7.40E-04	23082708	3.7	达标
	下坑村	1 小时	1.36E-03	23041307	6.79	达标
	上坑村	1 小时	1.36E-03	23041107	6.8	达标
	后郭村	1 小时	8.18E-04	23090107	4.09	达标
	前郭村	1 小时	8.23E-04	23091807	4.11	达标
	港溪村	1 小时	1.09E-03	23082807	5.44	达标
	溪东村	1 小时	8.50E-04	23092307	4.25	达标
氟化	下谢村	1 小时	8.69E-04	23082907	4.35	达标
物	小坑村	1 小时	6.33E-04	23032608	3.16	达标
120	石头岙村	1 小时	1.33E-03	23032608	6.66	达标
	下朱路村	1 小时	7.06E-04	23121004	3.53	达标
	马村	1 小时	1.20E-03	23011208	5.99	达标
	三门县实验学校	1 小时	6.29E-04	23071203	3.14	达标
	三门第二高级中学	1 小时	9.52E-04	23042207	4.76	达标
	上叶小学	1 小时	7.93E-04	23042607	3.96	达标
	上叶实验幼儿园	1 小时	1.40E-03	23041107	7.02	达标
	马娄小学	1 小时	9.06E-04	23090107	4.53	达标
	三门康宁医院	1 小时	1.26E-03	23091407	6.31	达标
	公路路政管理大人二中队	1 小时	1.33E-03	23091407	6.65	达标
	区域最大落地浓度	1 小时	2.34E-02	23072604	116.93	超标
	湘山村	1 小时	2.50E-04	23082708	16.70	达标
	城西村	1 小时	3.16E-04	23081907	21.00	达标
	松门村	1 小时	2.89E-04	23090509	19.30	达标
	金叶村	1 小时	5.40E-04	23090509	36.00	达标
	祥和村	1 小时	4.98E-04	23082708	33.20	达标
	下坑村	1 小时	6.26E-04	23090509	41.70	达标
	上坑村	1 小时	5.53E-04	23082009	36.80	达标
	后郭村	1 小时	4.43E-04	23091108	29.60	达标
,,, ,,	前郭村	1 小时	4.99E-04	23091108	33.30	达标
铬及	港溪村	1 小时	5.70E-04	23082807	38.00	达标
其化	溪东村	1 小时	4.30E-04	23090107	28.70	达标
合物	下谢村	1 小时	4.41E-04	23082907	29.40	达标
	小坑村	1 小时	3.46E-04	23091707	23.00	达标
	石头岙村	1 小时	6.99E-04	23081607	46.60	达标
	下朱路村	1 小时	3.98E-04	23060107	26.50	达标
	马村	1 小时	6.08E-04	23081607	40.60	达标
	三门县实验学校	1 小时	2.50E-04	23081907	16.70	达标
	三门第二高级中学	1 小时	3.56E-04	23090509	23.70	达标
	上叶小学	1 小时	4.90E-04	23090509	32.60	达标
	上叶实验幼儿园	1 小时	5.59E-04	23090508	37.20	达标
	ユースジング/JU四	т 1.н1	3.37L 07	23070300	31.20	

	马娄小学	1 小时	4.58E-04	23091108	30.50	达标
	三门康宁医院	1 小时	5.00E-04	23072507	33.40	达标
	公路路政管理大人二中队	1 <u></u>	5.40E-04	23072507	36.00	达标
	区域最大落地浓度	1 小时	7.19E-04	23041610	48.00	达标
	湘山村	1 小时	2.50E-04	23082708	8.34	达标
	城西村	1 小时	3.16E-04	23081907	10.50	达标
	松门村	1 小时	2.89E-04	23090509	9.65	达标
	金叶村	1 小时	5.40E-04	23090509	18.00	达标
	祥和村	1 小时	4.98E-04	23082708	16.60	达标
	下坑村	1 小时	6.26E-04	23090509	20.90	达标
	上坑村	1 小时	5.53E-04	23082009	18.40	达标
	后郭村	1 小时	4.43E-04	23091108	14.80	达标
	前郭村	1 小时	4.99E-04	23091108	16.60	达标
	港溪村	1 小时	5.70E-04	23082807	19.00	达标
始力	溪东村	1 小时	4.30E-04	23090107	14.30	达标
镍及	下谢村	1 小时	4.41E-04	23082907	14.70	达标
其化	小坑村	1 小时	3.46E-04	23091707	11.50	达标
合物	石头岙村	1 小时	6.99E-04	23081607	23.30	达标
	下朱路村	1 小时	3.98E-04	23060107	13.30	达标
	马村	1 小时	6.08E-04	23081607	20.30	达标
	三门县实验学校	1 小时	2.50E-04	23081907	8.34	达标
	三门第二高级中学	1 小时	3.56E-04	23090509	11.90	达标
	上叶小学	1 小时	4.90E-04	23090509	16.30	达标
	上叶实验幼儿园	1 小时	5.59E-04	23090508	18.60	达标
	马娄小学	1 小时	4.58E-04	23091108	15.30	达标
	三门康宁医院	1 小时	5.00E-04	23072507	16.70	达标
	公路路政管理大人二中队	1 小时	5.40E-04	23072507	18.00	达标
	区域最大落地浓度	1 小时	7.19E-04	23041610	24.00	达标
	湘山村	1 小时	1.08E-01	23082708	23.99	达标
	城西村	1 小时	1.26E-01	23081907	27.95	达标
	松门村	1 小时	1.28E-01	23090509	28.47	达标
	金叶村	1 小时	2.32E-01	23090509	51.62	达标
	样和村 工物材	1 小时	2.12E-01	23082708	47.16	达标
	下坑村	1 小时	2.63E-01	23090509	58.45	达标
	上坑村	1 小时	2.38E-01	23082009	52.93	达标
	后郭村	1 小时	1.90E-01	23091108	42.27	达标
	前郭村 港溪村	<u>1 小时</u> 1 小时	2.14E-01 2.36E-01	23091108 23082807	47.52 52.41	达标 达标
	溪东村	1 小时 1 小时	1.78E-01	23092807	39.48	达标
	下谢村	1 小时 1 小时	1.78E-01 1.83E-01	23082907	40.6	达标
PM_{10}	小坑村	1 小时	1.63E-01 1.41E-01	23010510	31.41	达标
	石头岙村	1 小时	2.89E-01	23081607	64.24	达标
	下朱路村	1 小时	1.71E-01	230601007	38.11	达标
	马村	1 小时	2.58E-01	23081607	57.43	达标
	三门县实验学校	1 小时	1.05E-01	23081907	23.25	达标
	三门第二高级中学	1 小时	1.57E-01	23090509	34.88	达标
	上叶小学	1 小时	2.11E-01	23090509	46.99	达标
	上叶实验幼儿园	1 小时	2.27E-01	23082009	50.52	达标
	马娄小学	1 小时	1.96E-01	23091108	43.66	达标
	三门康宁医院	1 小时	2.12E-01	23072507	47	达标
	公路路政管理大人二中队	1 小时	2.24E-01	23072507	49.75	达标
-	区域最大落地浓度	1 小时	8.06E+00	23121218	1791.12	超标
PM _{2.5}	湘山村	1 小时	5.40E-02	23082708	23.99	达标


公路路政管理大人二中队 区域最大落地浓度	1 小时 1 小时	1.12E-01 4.03E+00	23072507 23121218	49.75 1791.12	达标 超标
三门康宁医院	1 小时	1.06E-01	23072507	47	达标
马娄小学	1 小时	9.82E-02	23091108	43.66	达标
上叶实验幼儿园	1 小时	1.14E-01	23082009	50.52	达标
上叶小学	1 小时	1.06E-01	23090509	46.99	达标
三门第二高级中学	1 小时	7.85E-02	23090509	34.88	达标
三门县实验学校	1 小时	5.23E-02	23081907	23.25	达标
马村	1 小时	1.29E-01	23081607	57.43	达标
下朱路村	1 小时	8.57E-02	23060107	38.11	达标
石头岙村	1 小时	1.45E-01	23081607	64.24	达标
小坑村	1 小时	7.07E-02	23010510	31.41	达标
下谢村	1 小时	9.13E-02	23082907	40.6	达标
溪东村	1 小时	8.88E-02	23090107	39.48	达标
港溪村	1 小时	1.18E-01	23082807	52.41	达标
前郭村	1 小时	1.07E-01	23091108	47.52	达标
后郭村	1 小时	9.51E-02	23091108	42.27	达标
上坑村	1 小时	1.19E-01	23082009	52.93	达标
下坑村	1 小时	1.32E-01	23090509	58.45	达标
祥和村	1 小时	1.06E-01	23082708	47.16	达标
金叶村	1 小时	1.16E-01	23090509	51.62	达标
松门村	1 小时	6.41E-02	23090509	28.47	达标


非正常工况下二噁英小时浓度最大值分布图(mg/m³)

非正常工况下氟化物小时浓度最大值分布图(mg/m³)

非正常工况下 PM₁₀小时浓度最大值分布图(mg/m³)

非正常工况下 PM_{2.5} 小时浓度最大值分布图 (mg/m³)

在非正常工况下,企业污染物的排放量将高于正常情况,且部分污染物出现超标排放情况,故企业需引起充分重视,加强废气处理设施的管理和维护工作,确保废气处理设施的长期稳定运行,切实防止非正常情况的发生,并做好以下工作:严格按照与生产设备"同启同停"的原则提升治理设施运行率。根据处理工艺要求,在处理设施达到正常运行条件后方可启动生产设备,在生产设备停止、残留废气收集处理完毕后,方可停运处理设施。出现污染治理设施故障时的非正常情况,应停产检修,待所有生产设备、环保设施恢复正常后再投入生产,并如实填写非正常工况及污染治理设施异常情况记录信息表,且上报当地生态环境部门;因安全等因素生产工艺设备不能停止或不能及时停止运行的,应设置废气应急处理设施或采取其他替代措施。

7.8.4 大气防护距离

根据导则(HJ2.2-2018)规定,从厂界起所有超过环境质量短期浓度标准值的网格区域,以自厂界起至超标区域的最远垂直距离作为大气环境防护距离。采用 Aermod 预测本项目所有污染源对厂界外主要污染物的短期贡献浓度分布,企业厂界外各污染物短期贡献浓度均不超标,则无需设置大气环境防护距离。

7.8.5 污染物排放量核算

1、有组织排放量核算

表7-52 大气污染物有组织排放量核算表

		次1-54)	177条初有组织排	<u> </u>			
序	排放口编号	污染物	核算排放浓度/	核算排放速率/	核算年排放量/		
号	111以口狮与	17条1/0	(mg/m^3)	(kg/h)	(t/a)		
			一般排放口				
		颗粒物	3.347	0.502	1.807		
		铬及其化合物	0.01	0.0015	0.005		
1	1 DA001	镍及其化合物	0.01	0.0015	0.005		
		氟化物	0.213	0.032	0.058		
		二噁英	4.876E-08	7.314E-09	2.633E-08		
		颗粒物	5.020	1.506	5.420		
		铬及其化合物	0.01	0.003	0.011		
2	DA002	镍及其化合物	0.01	0.003	0.011		
		氟化物	0.323	0.097	0.175		
		二噁英	7.313E-08	2.194E-08	7.900E-08		
		颗粒物	10	0.128	0.612		
3	DA003	SO_2	14.7	0.187	0.898		
		NOx	137	1.750	8.401		
	4 DA004	颗粒物	10	0.064	0.307		
4		SO_2	14.7	0.094	0.450		
		NOx	137	0.877	4.208		
		颗粒物	10	0.064	0.307		
5	DA005	SO_2	14.7	0.094	0.450		
		NOx	137	0.877	4.208		
		颗粒物	10	0.064	0.307		
6	DA006	SO_2	14.7	0.094	0.450		
		NOx	137	0.877	4.208		
7	DA007	颗粒物	9.3	0.187	0.056		
/	DA007	非甲烷总烃	4.7	0.093	0.028		
			氟化物		0.233		
			二噁英		1.053E-07		
			颗粒物		8.816		
→	般排放口合计		SO_2		2.248		
/有	组织排放总计		NOx		21.025		
			铬及其化合物		0.016		
			镍及其化合物		0.016		
		-	非甲烷总烃(VOCs))	0.028		

2、无组织排放量核算

表7-53 大气污染物无组织排放量核算表

ıż	序 排放口 产污		立 汗		国家或地方污染	2物排放标准	年排放量	
一号	編号	环节	污染物	染防治	标准名称	浓度限值/	十升以里 (t/a)	
7	ラ	>/ · 14		措施	拉	(mg/m^3)	(va)	
			颗粒物		GB28664-2012	8.0	2.161	
	142 ht +-	熔炼、	氟化物	车间沉	GB28664-2012	0.02	0.012	
1	熔炼车 间 1	精炼、	二噁英	平向 <i>机</i> 降	/	/	2.77E-09	
	F] I	浇铸	铬及其化合物	P年	/	/	0.005	
			镍及其化合物		GB16297-1996	0.04	0.005	
2	熔炼车	熔炼、	颗粒物	车间沉	GB28664-2012	8.0	6.482	

	间 2	精炼、	氟化物	降	GB28664-2012	0.02	0.037		
		浇铸	二噁英		/	/	8.31E-09		
			铬及其化合物		/	/	0.012		
			镍及其化合物		GB16297-1996	0.04	0.012		
3	锻造车	淬火	颗粒物	车间沉	GB16297-1996	1.0	0.120		
3	间 1	件人	非甲烷总烃	降	GB16297-1996	4.0	0.012		
	无组织排放总计								
					8.763				
					0.049				
	Ξ	无组织排注	为 台 计		1.108E-08				
	/	心纽约州	以心口		铬及其化合物				
						0.017			
					非甲烷总烃(VO	$C_{\mathbf{S}}$)	0.012		

3、大气污染物年排放量核算

项目大气污染物年排放量核算详见下表 7-54。

序号 年排放量(t/a) 污染物 颗粒物 17.579 1 2 氟化物 0.282 二噁英 3 1.164E-07 4 2.248 SO_2 5 NOx 21.025 铬及其化合物 0.033 6 7 镍及其化合物 0.033 非甲烷总烃 (VOCs) 0.04

表7-54 大气污染物年排放量核算表

7.8.5 大气环境影响结论

本项目新增污染源正常排放下污染物短期浓度贡献值的最大浓度占标率 $\leq 100\%$,氟化物、铬及其化合物、镍及其化合物、 SO_2 、 NO_2 、非甲烷总烃小时最大落地浓度占标率分别为 92.66%、41.23%、20.61%、3.79%、70.87%、1.71%; 二噁英、氟化物、铬及其化合物、 PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 、TSP 日均最大落地浓度占标率分别为 19.2%、22.16%、4.0%、37.79%、37.79%、2.21%、30.99%和 37.64%。本项目新增污染源正常排放下污染物年均浓度贡献值的最大浓度占标率 $\leq 30\%$,二噁英、 PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 、TSP 年均最大落地浓度占标率分别为 12.8%、9.73%、9.73%、1.55%、17.36%和 6.51%。

叠加环境质量现状浓度及在建、拟建项目的环境影响后二噁英、氟化物、铬及其化合物、镍及其化合物、非甲烷总烃短期浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、TSP、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的保证率日平均质量浓度符合环境质量标准; PM_{10} 、 $PM_{2.5}$ 、 SO_2 、 NO_2 叠加环境质量现状浓度及在建、拟建项目的环境影响后的年平均质量浓度符合环境质量标准。

项目建设项目大气环境影响评价自查表详见表 7-55。

表7-55 建设项目大气环境影响评价自查表

	工作内容				自查项目	1				
评价	评价等级	—————————————————————————————————————	 [三级□	
等级 与范 围	评价范围	边长=50km□			边长 5~50km□			边	边长=5km☑	
	SO ₂ +NO _x 排放量	≥2000t/a□			500~20	000t/a□		<	< 500	t/a☑
评价 因子	评价因子	基本污染物(O ₃ 其他污染物(TS 化合物、镍 <i>I</i>	SP、二噁	英、氟化物	、铬及其	包括二次 PM _{2.5} □ 不包括二次 PM _{2.5} ☑				
评价 标准	评价标准	国家标准☑		地方标准		[31	讨录 D□		其位	也标准团
	环境功能区	一类区			二类区	<u> </u>		一类区	[和]	□类区□
现状	评价基准年			_	(2023)	年	1			
评价	环境空气质量现 状调差数据来源	长期例行] 数据□			主管部门 数据			现状	补充	监测☑
	现状评价		达标区	V			不	达标区□		
污染 源调 查	调查内容	本项目正常排 本项目非正常; 现有污染;	非放源☑		以替代的污染源 其他在建、拟建项		项目污	区计	或污染源 □	
	预测模型	AERMOD	ADMS	AUSTAL 2000	EDMS/A	CALI	_	网格模□	型	其他
	预测范围	边长≥501	km□		边长 5~50k	m□		边长=	5km[<u> </u>
大气	预测因子	氟化物、二噁英		化合物、镍	合物、镍及其化合 不包括			C次 PM _{2.5□} 二次 PM _{2.5□}		
环境 影响	正常排放短期浓 度贡献值	$C_{_{\Phi ar{\psi} B}}$	最大占标	率≤100%☑	C 本頭最大占标率≥100%□			%□		
预测	正常排放年均浓	一类区	(C本项目最大口	占标率≤10%	⁄ ₀□	C 本項	最大占	标率	>10%□
与评	度贡献值	二类区	(□★项目最大	5标率≤30%	6✓	C 本項	最大占	标率	>30%□
价	非正常排放 1h 浓度贡献值	非正常持续时长	÷ (0.5) h		C 非正常占标	率≤100%□		C #	_{正常} 占 100%	标率> 6☑
	保证率日平均浓 度和年平均浓度 叠加值		Cēm达标	Ā Ø			C An	不达标。	不达标口	
	区域环境质量的 整体变化情况		<i>k</i> ≤ -20%	6□	<i>k</i> >-20%□					
环境 监测 计划	污染源监测	监测因子:(氟化 TSP、SO ₂ 、NO 镍及其化合物	x、铬及其	、化合物、	无组织废气监测☑ 有组织废气监测☑			J	℃监测□	
N XII	环境质量监测	监测因	子: ()			监测点位数	数 ()		牙	
评价	环境影响	可以接受団不可	以接受□							

结论	大气环境防护距离		距()厂界最远()m					
		60 (2.248) //	NO _x : (21.025)	明	氟化物: (0.282)			
	运 为.据左排 边 具	SO ₂ : (2.248) t/a	t/a	颗粒物: (17.579)t/a	t/a			
	污染源年排放量	二噁英:	铬及其化合物:	镍及其化合物:	WOG (0.04) //			
		(1.164E-07)	(0.033) t/a	(0.033) t/a	VOCs: (0.04) t/a			
注: "	注: "□"为勾选项,填"√"; "()"为内容填写项							

7.8.6 环境监测及环境管理

1、环境管理

- (1) 按照规定规范排污口设置;
- (2) 依法申领排污许可证,按证排污,自证守法,按照规定缴纳排污费;
- (3) 重点管理好环保设施的运行,尤其是熔炼废气、精炼废气收集和处理系统的正常运行,严格遵守各项操作规程、及时处理异常情况。健全各类台帐并严格管理,包括废气监测台帐、废气处理设施运行台帐、原辅料的消耗台帐(包括使用量、废弃量、去向),废气处理耗材的用量和更换及转移处置台账。台账保存期限不得少于三年;
 - (4) 按照规定监理污染物排放和污染治理设施运行台账;
- (5) 落实监测监控制度,每年定期对废气排放口、厂界无组织浓度开展监测,监测指标须包含环评提出的主要特征污染物,废气处理设施须监测进、出口参数,并核算处理效率;
- (6) 按照要求向环境保护主管部门报告监测数据,并编制排污许可证年度执行报告,向社会公开;
- (7)制定、完善企业各项环保制度,包括环保人员的岗位责任制、环保设施运行管理制度、 环保设备的维修保养、巡回检查制度、分析监测制度、考核与奖惩制度、环保设施运行管理制度、 废气处理设施定期保养制度、废气监测制度等;
- (8)项目应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志,项目应在技术可行的条件下污染物处理设施的进出口均设置采样孔和采样平台,监测点设置应当满足相关技术要求。

2、大气环境监测计划

根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污单位自行监测技术指南 钢铁工业及炼焦化学工业》(HJ 878-2017)、《排污许可证申请与核发技术规范 钢铁工业》(HJ846-2017),中相关自行监测管理要求,本项目实施后全厂废气自行监测计划建议见表 7-56。

表7-56 项目实施后全厂废气自行监测计划方案

项目	监测地点	监测因子	监测频次	执行标准						
		颗粒物	1 次/年	《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269 号)中的超低排放要求						
废气	DA001	氟化物	1次/半年	《炼钢工业大气污染物排放标准》 (GB28664-2012)中表3特别排放限值						
		二噁英	1 次/年	《炼钢工业大气污染物排放标准》 (GB28664-2012) 中表 3 特别排放限值						

				// / / / / / / /
		镍及其化合物		《大气污染物综合排放标准》 (GB16297-1996)表 2 中排放限值
		铬及其化合物		《铁合金工业污染物排放标准》 (GB28666-2012)表 6 中特别排放限值
		颗粒物	1 次/年	《浙江省钢铁行业超低排放改造实施计划》(浙环函[2019]269 号)中的超低排放要求
		氟化物	1次/半年	《炼钢工业大气污染物排放标准》 (GB28664-2012) 中表 3 特别排放限值
	DA002	二噁英		《炼钢工业大气污染物排放标准》 (GB28664-2012) 中表 3 特别排放限值
		镍及其化合物	1 次/年	《大气污染物综合排放标准》 (GB16297-1996)表 2 中排放限值
		铬及其化合物		《铁合金工业污染物排放标准》 (GB28666-2012)表 6 中特别排放限值
	DA003	颗粒物、SO ₂ 、NOx	1 次/季度	《工业炉窑大气污染物排放标准
	DA004	颗粒物、SO ₂ 、NOx	1 次/季度	(GB9078-1996)》,同时满足《工业
	DA005	颗粒物、SO ₂ 、NOx		炉窑大气污染综合治理方案》的通知(环
	DA006	颗粒物、SO ₂ 、NOx	1 次/季度	大气[2019]56 号) 重点区域要求。
	DA007	颗粒物、非甲烷总烃	1 次/年	《大气污染物综合排放标准》 (GB16297-1996)表2中排放限值
	炼钢车间无 组织(有完 整厂房车 间)	颗粒物	1 次/年	《炼钢工业大气污染物排放标准》 (GB28664-2012)中表 4 标准要求
	厂区内无组 织	非甲烷总烃	1 次/年	《挥发性有机物无组织排放控制标准》 (GB37822-2019)表 A.1 中特别排放限 值
		颗粒物	1 次/季度	
		氟化物	1次/年(建议)	《大气污染物综合排放标准》
	厂界无组织	镍及其化合物	1次/年(建议)	(GB16297-1996) 中表 2 新污染源大气 污染物排放限值要求
) 芥无组织	非甲烷总烃	1次/年(建议)	
		铬及其化合物	1 次/年(建议)	《铁合金工业污染物排放标准》 (GB28666-2012)表 7 企业边界大气污染 物浓度限值要求

八、环境风险影响专项评价

8.1 建设项目风险源调查

1、风险源调查

(1) 物质危险性识别

根据企业提供的有关资料,企业风险物质主要为各类原辅料(润滑油、淬火油、液压油、天然气、丙烷等)以及生产过程产生的危险废物。查阅《危险化学品目录》(2015 版)等资料,企业生产使用的主要原辅材料及原辅料中相关物质的主要物理性质见下表 8-1。

表 8-1 本项目涉及到的危险物质情况

					, _ ,	**X H 12 /X 3	4547	11-12 174	7711190	
序号	物质	外观与性 状	熔点 /°C	沸点 /℃	蒸气压	溶解性		ng/kg	质分级 LC ₅₀ mg/m ³ 吸入	危险特性
1	润滑	油状液体, 淡黄 色至褐色, 无气味或 略带异味	-	1	-	不溶于水	-	-	-	可燃,遇明火、高热可燃。
2	液压油	淡黄色液 体	1		-	不溶于水	-	1	-	可燃,遇明火、高热可燃。
3	淬火 油	淡黄色液 体	1		-	不溶于水	-	1	-	可燃,遇明火、高热可燃。
4	天然 气(以 甲烷 计)	无色无臭 气体	-182.5	-161.5		微溶于水, 溶于醇、乙 醚	-	-	-	危险标记: 4(易燃液体); 易燃;与空气混合能形成 爆炸性混合物,遇热源和 明火有燃烧爆炸的危险。
5	丙烷	无色无臭 气体	-187.6	-42.1		微溶于水, 溶于醇、乙 醚	-	-	-	危险标记: 4(易燃液体); 易燃;与空气混合能形成 爆炸性混合物,遇热源和 明火有燃烧爆炸的危险。

2、环境敏感目标调查

本项目环境风险评价环境敏感目标调查见章节 7.4"环境保护目标"表 7-14。

8.2 环境风险潜势初判

1、Q值确定

计算所涉及的每种危险物质在厂界内的最大存在总量与其在《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B 中对应临界量的比值 Q。

当只涉及一种危险物质时, 计算该物质的总量与其临界量比值, 即为 Q;

当存在多种危险物质时,则按下式计算物质总量与其临界量比值(Q):

$$Q = q_1/Q_1 + q_2/Q_2 + \dots + q_n/Q_n$$

式中: q_1 , q_2 , ..., q_n —每种危险物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n —每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

根据对照《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B,项目风险物料存储情况见表 8-2。

危险物质名称	具士方具。(T)	НЈ169-2	018附录B
厄险初灰石 物	最大存量q(T)	临界量Q(T)	q/Q
润滑油	1.7	2500	0.00068
液压油	10	2500	0.004
淬火油	50	2500	0.02
乳化液	1.7	100	0.017
天然气(以甲烷计)	1.0	10	0.1
丙烷	0.7	10	0.07
危险废物(集尘灰,重金属铬)	0.166	0.25	0.664
危险废物(集尘灰,重金属镍)	0.166	0.25	0.664
危险废物 (废乳化液)	2	10	0.2
其他危险废物	109.388	50	2.188
合	计	·	3.928

表8-2 项目物料存储情况

注:天然气用量按 1h 用量进行考虑;危险废物储存量按产生量及暂存周期计算;乳化液临界量参照危害水环境物质(急性毒性类别 1)临界值;危险废物临界量参照健康危险急性毒性物质(类别 2,类别 3)临界值。集尘灰最大暂存量为60t,铬及其化合物、镍及其化合物占比约0.221%,则重金属铬、重金属镍最大暂存量约0.133t。

根据以上分析,项目 Q 值为 3.928,小于 10。

2、行业及生产工艺(M)

分析项目所属行业及生产工艺特点,按下表 8-3 评估生产工艺情况。具有多套工艺单元的项目,对每套生产工艺分别评分并求和。将 M 划分为(1)M>20;(2)10<M \leq 20;(3)5<M \leq 10;(4)M=5,分别以 M1、M2、M3 和 M4 表示。

表8-3 行业及生产工艺(M)

行业	评估依据	最高 分值	本项目 情况	分值 (分)
石化、化 上、 医菇 — 每工	氧化工艺、放塞化工艺、碘化工艺、浆膏工艺、烷基化工艺、新型煤化工工艺、电石生产工艺、偶氮化工艺	10/每套		
111 ///	无机酸制酸工艺、焦化工艺	5/每套	本项目涉及	
	其他高温或高压、且涉及危险物质的工艺工程 a、 危险物质贮存罐区	5/(罐区)	危险物质使 用、高温工艺	10
管道、港口 /码头等	涉及危险物质管道运输项目、港口/码头等	10		
石油天然气	石油、天然气、页岩气开采(含净化),气库(不 含加气站的气库),油库(不含加气站的油库)、 油气管线 b(不含城镇燃气管线)	10		
其他	涉及危险物质使用、贮存的项目	5		

注: a 高温指工艺温度≥300℃,高压指压力容器的设计压力(p)≥10.0MPa;

b 长输管道运输项目应按站场、管线分段进行评价。

由上表可知,本项目 M 为 10 分,属于 M3。

3、危险物质及工艺系统危险性(P)分

根据危险物质数量与临界量比值(Q)和行业及生产工艺(M)分级,按下表 8-4 确定危险物质及工艺系统危险性(P)分级,分别以 P1、P2、P3、P4 表示。

表8-4 危险物质及工艺系统危险性等级判断(P)

危险物质数量与临界量	行业及生产工艺(M)				
比值(Q)	M1	M2	M3	M4	
Q≥100	P1	P1	P2	P3	
10≤Q<100	P1	P2	Р3	P4	
1≤Q<10	P2	Р3	P4	P4	

本项目Q为3.928, M为M3, 故危险物质及工艺系统危险性(P)为P4。

4、环境敏感程度(E)的分级

(1) 大气环境

依据环境敏感目标环境敏感性及人口密度划分环境风险受体的敏感性,共分为三种类型: E1 为环境高度敏感区, E2 为环境中度敏感区, E3 为环境低度敏感区。

表8-5 危险物质及工艺系统危险性等级判断(P)

	类别	大气环境敏感性	本项目情况
ſ		周边5公里范围内居住区、医疗卫生机构、文化教育机构、科	根据调查,周边5公里范围
		研、行政办公等机构人口总数大于5万人,或其他需要特殊保	内居住区、医疗卫生机构、
	E1	护区域; 或周边500m范围内人口总数大于1000人; 油气、化学	文化教育机构、科研、行
		品输送管线管段周边200m范围内,每千米管段人口数大于200	政办公等机构人口总数大
		人	于1万人,小于5万人;周

	周边5公里范围内居住区、医疗卫生机构、文化教育机构、科	
	研、行政办公等机构人口总数大于1万人;小于5万人;或周边	于500人,小于1000人,因
E2	500m范围内人口总数大于500人,小于1000人;油气、化学品	此属E2。
	输送管线管段周边200m范围内,每千米管段人口数大于100人,	
	小于200人	
	周边5公里范围内居住区、医疗卫生机构、文化教育机构、科	
E3	研、 行政办公等机构人口总数小于1万人; 或周边500m范围内	
E3	人口总数小于500人;油气、化学品输送管线管段周边200m范	
	围内,每千米管段人口数小于100人	

由上表可知, 大气环境敏感程度为 E2。

(2) 地表水环境

地表水功能区敏感分区见表 8-6。

表8-6 地表水功能区敏感分区

类别	地表水功能区敏感特征	本项目情况
敏感 F1	排放点进入地表水水域环境功能为II类及以上,或海水水质分类第一类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内跨国界的	根据调查,本项目周
较敏感 F2	排放点进入地表水水域环境功能为III类,或海水水质分类第二类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内跨省界的	
低敏感 F3	上述地区之外的其他地区	

环境敏感目标分级见表 8-7。

表8-7 环境敏感目标分级

分级	环境敏感目标	本项目情况
S1	林、珊瑚礁等滨海湿地生态系统,珍稀、濒危海洋生物的天然集中分布区,海洋特别保护区,海上自然保护区,盐场保护区,海水浴场,海洋自然历史遗迹,风景名胜区,或其他特殊重要保护区域。	项目西北侧为 珠游溪,环境 功能为Ⅲ类, 无上述类型 1
S2	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)。 10km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体:天然渔场;森林公园;地质公园;海滨风景游览区;具有重要经济价值的海洋生物生存区域。	和类型 2 包括 的敏感保护目 标,因此属 \$3。
S3	排放点下游(顺水流向)10km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内无上述类型1和类型2包括的敏感保护目标。	

依据事故情况下危险物质泄漏到水体的排放点受纳地表水体功能敏感性,与下游环境明目标情况,共分为三种类型: E1 为环境高度敏感区,E2 为环境中度敏感区,E3 为环境低度敏感区。

表8-8 环境敏感目标分级

环境敏感目标	地表水功能敏感性				
一	F1	F2	F3		
S 1	E1	E1	E2		
S2	E1	E2	E3		
S 3	E1	E2	E3		

由上表 8-8 可知, 地表水环境敏感程度为 E2。

(3) 地下水环境

地下水功能敏感性分区见表 8-9。

表8-9 地下水功能区敏感分区

类别	地表水功能区敏感特征	本项目情况
	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建	
敏感 G1	和规划的饮用水水源)准保护区;除集中式饮用水水源以外的国	
型恐 UI	家或地方政府设定的与地下水环境相关的其他保护区,如热水、	
	矿泉水、温泉等特殊地下水资源保护区	
	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建	根据调查,本项
	和规划的饮用水水源)准保护区以外的补给径流区;未划定准保	目属 G3。
较敏感 G2	护区的集中式饮用水水源,其保护区以外的补给径流区;分散式	
	饮用水水源地;特殊地下水资源(如热水、矿泉水、温泉等)保	
	护区以外的分布区等其他未列入上述敏感分级的环境敏感区 a	
不敏感 G3	上述地区之外的其他地区	

a"环境敏感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境敏感区

包气带防污性能分级见表 8-10。

表8-10 包气带防污性能分级

分级	包气带岩土的渗透性能	本项目情况
D3	Mb≥1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、稳定	
D2	0.5≤Mb<1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、稳定 Mb≥1.0m,1.0×10 ⁻⁶ <k≤1.0×10<sup>-4cm/s,且分布连续、稳定</k≤1.0×10<sup>	根据调查,本项目岩(土) 层不满足上述"D2"和 "D3"条件,因此属 D1。
D1	岩(土)层不满足上述"D2"和"D3"条件	D5 从门, 四此周 D1。
Mb:岩	·土层单层厚度; K: 渗透系数。	

依据地下水功能敏感性与包气带防污性能,共分为三种类型: E1 为环境高度敏感区, E2 为环境中度敏感区, E3 为环境低度敏感区。

表8-11 地下水环境敏感程度分级

有与世际污料处		地下水功能敏感性			
包气带防污性能	G1	G2	G3		
D1	E1	E1	E2		
D2	E1	E2	E3		
D3	E2	E3	E3		

由上表 8-11 可知, 地下水环境敏感程度为 E2。

5、环境风险潜势判定

根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,按下表 8-12 确定环境风险潜势。

表8-12 建设项目环境风险潜势划分

环境敏感程度(E)	危险物质及工艺系统危险性 (P)					
	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害(P4)		
环境高度敏感区(E1)	IV+	IV	III	III		
环境中度敏感区(E2)	IV	III	III	II		
环境低度敏感区(E3)	III	III	II	I		
注: IV+为极高环境风险。						

本项目危险物质及工艺系统危险性(P)为P4,大气环境、地表水环境、地下水环境敏感程度分别为E2、E2、E2,故大气环境、地表水环境、地下水环境风险潜势分别为II、II、II。综上所述,本项目综合环境风险潜势为II。

8.3 评价等级及评价范围

1、评价等级

评价工作等级见表8-13。

表8-13 建设项目评价工作等级

	环境风险潜势	IV, IV ⁺	III	II	I
	评价工作等级	_	<u> </u>	三	简单分析a
ſ	且加引工光加证从工作引	京大士 大州	小小人 从 場 工 工 に	た目/ョウ・ヘノフ エアユウノ	5亩1日日以际世

a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防范措施等方面给出定性的说明。见附录 A。

本项目综合环境风险潜势为II,大气、地表水、地下水环境风险评价工作等级均为三级。

2、评价范围

大气环境风险评价范围:根据《建设项目环境风险评价技术导则》(HJ169-2018),三级评价距项目边界不低于3km。

地表水环境风险评价范围:根据前述分析,本项目地表水环境风险为三级评价,进行简单分析。评价范围主要考虑本项目对周边地表水体的影响。

地下水环境风险评价范围:参照《环境影响评价技术导则 地下水环境》(HJ610-2016),评价范围设为 $6km^2$ 。

8.4 风险识别

1、物质危险性识别

根据企业提供的有关资料,本项目涉及的环境风险物质主要为润滑油、淬火油、液压油、淬火油、乳化液、天然气、丙烷,其主要物理性质见表8-1。

2、生产设施风险识别

生产设施风险识别范围包括:主要生产装置、贮运系统、公用工程系统、工程环保设施及辅助生产设施等。

(1) 贮运系统风险识别

企业使用的各类原辅料以及生产过程产生的危险废物,具有一定的危险特性(腐蚀性、反应性,易引发火灾、爆炸等事故),因人为存放不善、管理不规范等,可能会造成火灾、爆炸等事故。

(2) 生产装置风险识别

主要表现在生产设备造成的人员机械损伤。

- (3) 污染治理设施的潜在风险
- ①废气处理系统故障,包括粉尘处理系统故障,造成主要的颗粒物、二噁英、氟化物等污染物去除效率下降,污染空气环境。
- ②污水管网系统存在由于管道堵塞、破裂和接头处的破损造成大量污水外溢的事故,外溢污水不经处理直接外渗将会对土壤、地表水体、地下水体等造成污染。
- ③项目危险废物如不按规定地点贮存,运输过程抛洒、泄漏,有可能冲刷渗入地下,污染土壤、地下水。危险废物暂存场所可能发生火灾,次生大气、水环境污染物。

3、火灾爆炸等引发的伴生/次生污染物排放

企业可能会发生火灾及爆炸事件,爆炸产生的破碎设备四处飞溅,爆炸产生的冲击波破坏周围的建筑。从发生火灾爆炸事故影响的范围来看,主要是对近距离内的人员和设备产生破坏,可能会受到爆炸冲击波和热气浪的影响。产生的伴生污染为燃烧产物,参考物质化学组分,燃烧产物主要为烟尘、 CO_2 、CO及原材料相关的化学物质等,会导致大气环境污染事故,会对周围环境敏感点人群的健康和安全产生伤害。

4、风险识别结果

对本项目生产过程潜在危险性识别结果,本项目环境风险识别见表8-14。

可能受影响的环境敏感 风险单元 风险类型 环境影响途径 主要危险物质 目标 **址周边居民,泄漏点** 泄漏、火灾大气、地表水、 润滑油、淬火油、液压油、 附近水体、周边土壤环 原料堆场 淬火油、乳化液等 爆炸 地下水、土壤 境、地下水环境 **拉周边居民,泄漏点** 泄漏、火灾大气、地表水、 储气间 丙烷气瓶等 附近水体、周边土壤环 爆炸 地下水、土壤 境、地下水环境 颗粒物、二噁英、氟化物、 废气处理设施 铬及其化合物、镍及其化合 事故排放 大气 厂址周边居民 物、非甲烷总烃等 污水收集管网、 地表水、地下 附近水体、周边地下水、 COD、氨氮等 泄漏 化粪池 水、土壤 土壤 危险废物 地下水、土壤 周边土壤、地下水环境 危险废物等 泄漏 地表水、地下 附近水体、周边地下水、 事故应急池 事故废水 泄漏 土壤 水、土壤

表8-14 建设项目环境风险识别表

8.5 风险事故情形分析

根据导则要求,设定的风险事故情形发生可能性应处于合理的区间,并与经济发展水平相适应,一般而言,发生频率小于导则10⁻⁶/年的事件就是极小概率事件,可作为代表性事故情形中最大可信事故设定的参考。根据分析,本项目主要是以下几种风险事故情形:

- 1、原料堆场发生泄漏对周围环境的影响;
- 2、废气处理设施达不到正常处理效率时对周围环境造成的影响;
- 3、污水管道堵塞、破裂和接头处的破损对周围环境造成的影响;
- 4、火灾爆炸事故对周围环境造成的影响。
- 5、原料堆场、危废暂存间及化粪池/隔油池发生化学品和污水渗漏对地下水造成的影响。

8.6 事故后果分析

- 1、对大气环境的影响分析
- (1) 废气事故排放

本项目运行过程中,若废气处理系统出现故障,都有可能会导致颗粒物、二噁英、氟化物、 铬及其化合物、镍及其化合物等污染物的事故性排放,对周边大气环境的影响将明显增大,因此 项目需加强废气收集和处理设施的监管,杜绝废气事故排放情景的发生。

(2) 泄漏事故

本项目原辅料中的润滑油、淬火油、液压油、乳化液在厂区存储过程中因包装桶破裂突爆泄漏时,由于物料挥发,同时受液体表面气流影响,将在短时间内扩散开来,挥发到周围的环境空气中,挥发出来的气体对周围环境空气有一定的影响,但在发生泄漏十分钟内可被发现,15分钟可堵住泄漏裂口,在30分钟内可完成对已泄漏出来的残液处理,故泄漏不会造成大面积的扩散,对大气环境影响较小。

(3) 火灾事故

本项目发生火灾时在放出大量辐射热的同时,还散发大量的浓烟,它是由燃烧物质释放出的高温蒸汽和毒气,被分解的未燃物质和被火燃加热而带入上升气流中的空气和污染物质的混合物。它不但含有大量的热量,而且还含有蒸汽,有毒气体和弥散的固体微粒,对火场周围的人员生命安全和周围的大气环境质量造成污染和破坏。

2、对地表水环境的影响分析

(1) 泄漏事故

本项目原辅料中的润滑油、淬火油、液压油、乳化液在厂区存储过程中因包装桶破裂突爆泄漏,虽然事故发生概率较低,但如发生泄漏事故,泄漏物料进入附近水体,会导致周边水环境变化。当物料发生少量泄漏时,泄漏液体很容易控制其外流,一般不会通过雨污管网直接进入外界水体环境; 当发生较大泄漏时,及时采取处理措施(如用废沙土等吸附剂进行收集),物料一般不会通过雨污管网进入水体外环境,对周围水体环境影响不大。

(2) 污水管道堵塞、破裂和接头处的破损

项目污水管网系统存在由于管道堵塞、破裂和接头处的破损造成大量污水外溢的事故,外溢污水不经处理直接外溢将会对地表水体等造成污染。同时也必须采取措施,避免污水的事故排放,避免污水收集与输送系统事故废水直接排放入水体。

(3) 火灾事故

发生火灾事故时,会产生大量的洗消废水,洗消废水若处理不及时或处理措施采取不当,极 有可能通过雨污管网进入外界水环境,对周围水体环境产生一定的影响。

3、对地下水环境的影响分析

(1) 污染途径

本项目涉及的对地下水环境可能造成影响的污染源主要是原料堆场、危废暂存间及化粪池/隔油池发生化学品和污水渗漏对地下水造成的污染。本项目原料堆场、危废暂存间及化粪池/隔油池采取硬化及防腐、防渗处理,因此项目各生产工段和废水正常情况下不会对地下水产生污染影响。

本次环评考虑非正常工况下对地下水的影响,污染途径为:①原料堆场防渗系统损坏,同时包装桶出现开裂、渗漏等现象,导致液压油等化学品泄漏对地下水造成影响,主要污染物为石油类;②危废暂存间防渗系统损坏,导致危险废物泄漏对地下水造成影响,主要污染物为 COD;③ 化粪池/隔油池出现故障或底部出现破损,导致较长时间内废水通过裂口渗入地下影响地下水质,主要污染物为 COD、氦氮等。

(2) 评价范围

根据地下水导则,调查评价范围确定可采用公式计算法、查表法和自定义法,项目采用查表法确定评价范围,即三级项目调查和评价面积(km²)应不大于 6km²,最终确定项目地下水评价范围为:以本项目为中心,6km²的圆形区域,预测层位为地下水的潜水含水层。

(3) 评价时段

设定为非正常工况发生后的1天、10天、100天和1000天。

(4) 预测情景和污染源强

本项目原料堆场、危废暂存间防渗系统损坏,且包装桶同时出现开裂、渗漏等现象的概率较低,且发生开裂和渗漏时能及时发现,及时采取相应措施,故本评价选取"化粪池/隔油池出现故障或底部出现破损"代表性的场景典型事故进行预测评价。

根据项目污染源的具体情况,排放形式可以概化为点源;排放规律可以概化为连续恒定排放。 非正常工况源强见下表 8-15。

工况	废水来源	污染物	污染物浓度(mg/L)	
非正常工况	生活污水	耗氧量	87.5	
	生活汚水	氨氮	35	

表8-15 非正常工况源强表

(5) 预测模型及模型参数

注: *采用污水中 COD 浓度(350mg/L)经系数转换而来, COD: 高锰酸盐=4:1。

1) 预测模型

假设废水处理设施的废水泄漏后不久采取应急响应,截断污染物下渗,将此污染情景概化为一维稳定流动二维水动力弥散问题,污染源为瞬时注入,以上情景适用于《环境影响评价技术导则地下水环境》(HJ610-2016)导则推荐解析法中的 D.1.2.2.1,瞬时注入示踪剂-平面瞬时点源方程,当取平行地下水流动的方向为 x 轴正方向时,污染物浓度分布模型如下:

$$C_{(x,y,t)} = \frac{m_M/M}{4\pi n \sqrt{D_L D_T} t} e^{-\left[\frac{(x-ut)^2}{4D_L t} + \frac{y^2}{4D_T t}\right]}$$

式中: x, y——计算点处的位置坐标;

t——时间, d;

C(x, y, t)——t 时刻点 x, y 处的示踪剂浓度, g/L;

M——含水层的厚度, m;

mM——瞬时注入的示踪剂质量, kg;

u——水流速度, m/d;

n——有效孔隙度, 无量纲;

 D_L ——纵向 x 方向的弥散系数, m^2/d ;

 D_T —横向 y 方向的弥散系数, m^2/d ;

π-----圆周率

为便于模型计算,将地下水动力学模式中预测各污染物在含水层中的扩散作以下假定:

- ①污染物进入地下水中对渗流场没有明显的影响;
- ②预测区内的地下水是稳定流;
- ③污染物在地下水中的运移按"活塞推挤"方式进行;
- ④预测区内含水层的基本参数(如渗透系数、厚度、有效孔隙度等)不变。

在上述概化条件下,结合水文地质条件和地下水动力特征,对事故状态情景下,废水中污染物的扩散速度进行预测。

- 2) 模型参数选取
- ①含水层的厚度 M

参考《浙江三门经济开发区(滨海科技城区块、临港产业城区块)总体规划环境影响报告书》 资料,项目所在区域含水层平均厚度取 12m。

②瞬时注入的示踪剂质量 mM

假设本工程可能出现泄漏的地点为化粪池, 化粪池面积约为 15m²。

非正常工况下,化粪池渗漏量参照《给水排水构筑物工程施工及验收规范》(GB50141-2008) 正常渗漏系数为 $2L/(m^2 \cdot d)$ 的 100 倍计算,即 $200L/(m^2 \cdot d)$ 。假定企业化粪池发生渗漏 10 天 后被发现并修复,渗漏量计算如下: 废水泄漏量=15*0.2*10=30m3;

耗氧量渗漏量=30*87.5/1000=2.625kg。

氨氮渗漏量=30*35/1000=1.05kg。

③其他相关参数

a.地下水水流速度

 $U=K\times I/n$

式中: U——地下水实际流速, m/d;

K——渗透系数, m/d;

I——水力坡度,取 0.01;

n——孔隙度;

项目含水层以淤泥质粉质黏土为主,根据地下水评价导则(渗透系数经验值见表 8-16),渗透系数取 0.1 m/d。

表8-16 渗透系数经验值表

岩性名称	主要颗粒粒径	渗透系数(m/d)	渗透系数(m/s)
轻亚粘土	/	0.05~0.1	5.79×10 ⁻⁵ ~1.16×10 ⁻⁴
亚粘土	/	0.1~0.25	1.16×10 ⁻⁴ ~2.89×10 ⁻⁴
黄土	/	0.25~0.5	$2.89 \times 10^{-4} \sim 5.79 \times 10^{-4}$
粉土质砂	/	0.5~1.0	5.79×10 ^{-4~} 1.16×10 ⁻³
粉砂	0.05~0.1	1.0~1.5	$1.16 \times 10^{-3} \sim 1.74 \times 10^{-3}$
细砂	0.1~0.25	5.0~10	5.79×10 ⁻³ ~1.16×10 ⁻²
中砂	0.25~0.5	10.0~25	1.16×10 ⁻² ~2.89×10 ⁻²
粗砂	0.5~1.0	25~50	2.89×10 ⁻² ~5.78×10 ⁻²
砾砂	1.0~2.0	50~100	5.78×10 ⁻² ~1.16×10 ⁻¹
圆砾	/	75~150	8.68×10 ⁻² ~1.74×10 ⁻¹
卵石	/	100~200	1.16×10 ⁻¹ ~2.31×10 ⁻¹
块石	/	200~500	2.31×10 ⁻¹ ~5.79×10 ⁻¹
漂石	/	500~1000	5.79×10 ^{-1~} 1.16×10 ⁰

根据本项目的土质类别以及渗透系数,对照下表 8-17,本项目孔隙度取 0.397。

表8-17 各种岩土的孔隙度

岩土类别	渗透系数 K(cm/s)	孔隙率 (n)	资料来源
砾	240	0.371	
粗砾	160	0.431	
中粗砾	0.048	0.394	瑞士工学研究所
含黏土的砂	1.1E-4	0.397	
含黏土 1%的砂砾	2.3E-5	0.342	

经计算,地下水流速约为 0.0025 m/d。

b.纵向弥散系数、横向弥散系数 D_T

参考同区域其他项目 D_L 取 $1m^2/d$ 。

 D_T/D_L =0.1,因此 D_T 取 $0.1m^2/d$ 。

(5) 预测结果

根据《环境影响评价技术导则 地下水环境》(HJ610—2016)推荐的水动力弥散模型预测: 污染物泄漏在含水层中 1d、10d、100d、1000d 污染物扩散运移范围预测见下表 8-18、表 8-19。

表 8-18 污染物扩散解析计算表-耗氧量 单位: mg/L

	衣 0-10	17/1/01/10	(胖別り昇衣・花	判里 中心: mg/L	
序号	距离(m)		耗氧量((高锰酸盐指数浓度)	
17. 4	此内 (III)	1d	10d	100d	1000d
1	0.5	129.754	13.181	0.884	0.002
2	1	107.637	12.944	0.883	0.002
3	1.5	78.798	12.554	0.881	0.002
4	2	50.908	12.024	0.877	0.002
5	2.5	29.024	11.374	0.873	0.002
6	3	14.604	10.625	0.868	0.002
7	3.5	6.484	9.802	0.861	0.002
8	4	2.541	8.930	0.854	0.002
9	5	0.268	7.140	0.836	0.002
10	6	0.017	5.430	0.814	0.002
11	7	0.001	3.928	0.789	0.002
12	8	0.000	2.703	0.761	0.002
13	9	0.000	1.769	0.730	0.002
14	10	0.000	1.102	0.697	0.002
15	11	0.000	0.653	0.662	0.002
16	12	0.000	0.368	0.626	0.002
17	13	0.000	0.197	0.589	0.001
18	14	0.000	0.100	0.551	0.001
19	15	0.000	0.049	0.513	0.001
20	16	0.000	0.022	0.476	0.001
21	17	0.000	0.000	0.438	0.001
22	18	0.000	0.000	0.402	0.001
23	19	0.000	0.000	0.367	0.001
24	20	0.000	0.000	0.333	0.001
25	21	0.000	0.000	0.301	0.001
26	22	0.000	0.000	0.271	0.001
27	23	0.000	0.000	0.242	0.001
28	24	0.000	0.000	0.216	0.001
29	25	0.000	0.000	0.191	0.001
30	26	0.000	0.000	0.169	0.001
31	27	0.000	0.000	0.148	0.001
32	30	0.000	0.000	0.097	0.001
33	40	0.000	0.000	0.017	0.001
34	45	0.000	0.000	0.006	0.001

35	50	0.000	0.000	0.002	0.001
36	60	0.000	0.000	0.000	0.001
37	65	0.000	0.000	0.000	0.001
38	70	0.000	0.000	0.000	0.000
39	75	0.000	0.000	0.000	0.000
40	80	0.000	0.000	0.000	0.000
41	85	0.000	0.000	0.000	0.000
42	90	0.000	0.000	0.000	0.000
43	95	0.000	0.000	0.000	0.000
44	100	0.000	0.000	0.000	0.000
45	105	0.000	0.000	0.000	0.000
46	110	0.000	0.000	0.000	0.000
47	115	0.000	0.000	0.000	0.000
48	120	0.000	0.000	0.000	0.000
49	125	0.000	0.000	0.000	0.000
50	130	0.000	0.000	0.000	0.000
51	135	0.000	0.000	0.000	0.000
52	140	0.000	0.000	0.000	0.000
53	145	0.000	0.000	0.000	0.000
54	150	0.000	0.000	0.000	0.000
55	155	0.000	0.000	0.000	0.000
56	160	0.000	0.000	0.000	0.000
57	165	0.000	0.000	0.000	0.000
58	170	0.000	0.000	0.000	0.000
59	175	0.000	0.000	0.000	0.000
60	180	0.000	0.000	0.000	0.000

表 8-19 污染物扩散解析计算表-氨氮 单位: mg/L

77 - 10/10/04 10/11/11/11/11/11/11/11/11/11/11/11/11/1							
序号	距离 (m)	氨氮					
175	此丙(M <i>)</i>	1d	10d	100d	1000d		
1	0.5	51.902	5.272	0.354	0.001		
2	1	43.055	5.178	0.353	0.001		
3	1.5	31.519	5.022	0.352	0.001		
4	2	20.363	4.810	0.351	0.001		
5	2.5	11.610	4.549	0.349	0.001		
6	3	5.841	4.250	0.347	0.001		
7	3.5	2.594	3.921	0.344	0.001		
8	4	1.016	3.572	0.341	0.001		
9	5	0.107	2.856	0.334	0.001		
10	6	0.007	2.172	0.326	0.001		
11	7	0.000	1.571	0.316	0.001		
12	8	0.000	1.081	0.304	0.001		
13	9	0.000	0.708	0.292	0.001		

14 10 0.000 0.441 0.279 0.001 15 11 0.000 0.261 0.265 0.0001 16 12 0.000 0.147 0.250 0.001 17 13 0.000 0.079 0.236 0.001 18 14 0.000 0.040 0.220 0.001 19 15 0.000 0.019 0.205 0.001 20 16 0.000 0.009 0.190 0.001 21 17 0.000 0.004 0.175 0.001 21 17 0.000 0.002 0.161 0.001 23 19 0.000 0.000 0.0147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.076 0.001 27 23 0.000						
16 12 0.000 0.147 0.250 0.001 17 13 0.000 0.079 0.236 0.001 18 14 0.000 0.040 0.220 0.001 19 15 0.000 0.019 0.205 0.001 20 16 0.000 0.009 0.190 0.001 21 17 0.000 0.004 0.175 0.001 22 18 0.000 0.002 0.161 0.001 23 19 0.000 0.001 0.147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.112 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.086 0.001 28 24 0.000 0.000 0.076 0.001 30 26 0.000 <	14	10	0.000	0.441	0.279	0.001
17 13 0.000 0.079 0.236 0.001 18 14 0.000 0.040 0.220 0.001 19 15 0.000 0.019 0.205 0.001 20 16 0.000 0.009 0.190 0.001 21 17 0.000 0.004 0.175 0.001 22 18 0.000 0.002 0.161 0.001 23 19 0.000 0.000 0.147 0.001 24 20 0.000 0.000 0.133 0.001 24 20 0.000 0.000 0.108 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 <	15	11	0.000	0.261	0.265	0.001
18 14 0.000 0.040 0.220 0.001 19 15 0.000 0.019 0.205 0.001 20 16 0.000 0.009 0.190 0.001 21 17 0.000 0.004 0.175 0.001 22 18 0.000 0.001 0.147 0.001 23 19 0.000 0.000 0.147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.188 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.067 0.001 32 30 0.000 <	16	12	0.000	0.147	0.250	0.001
19	17	13	0.000	0.079	0.236	0.001
20 16 0.000 0.009 0.190 0.001 21 17 0.000 0.004 0.175 0.001 22 18 0.000 0.002 0.161 0.001 23 19 0.000 0.000 0.137 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 <	18	14	0.000	0.040	0.220	0.001
21 17 0.000 0.004 0.175 0.001 22 18 0.000 0.002 0.161 0.001 23 19 0.000 0.001 0.147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.067 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.007 0.000 35 50 0.000 <	19	15	0.000	0.019	0.205	0.001
22 18 0.000 0.002 0.161 0.001 23 19 0.000 0.001 0.147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.018 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.059 0.001 33 40 0.000 0.000 0.039 0.001 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 <	20	16	0.000	0.009	0.190	0.001
23 19 0.000 0.001 0.147 0.001 24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.059 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 34 45 0.000 0.000 0.002 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.000 0.000 36 60 0.000 <	21	17	0.000	0.004	0.175	0.001
24 20 0.000 0.000 0.133 0.001 25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 <	22	18	0.000	0.002	0.161	0.001
25 21 0.000 0.000 0.121 0.001 26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.067 0.001 30 26 0.000 0.000 0.059 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.000 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 <	23	19	0.000	0.001	0.147	0.001
26 22 0.000 0.000 0.108 0.001 27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.059 0.001 31 27 0.000 0.000 0.039 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 40 80 0.000 <	24	20	0.000	0.000	0.133	0.001
27 23 0.000 0.000 0.097 0.001 28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.039 0.001 32 30 0.000 0.000 0.007 0.000 33 40 0.000 0.000 0.002 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 <	25	21	0.000	0.000	0.121	0.001
28 24 0.000 0.000 0.086 0.001 29 25 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.000 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 <	26	22	0.000	0.000	0.108	0.001
29 25 0.000 0.000 0.076 0.001 30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.001 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 <	27	23	0.000	0.000	0.097	0.001
30 26 0.000 0.000 0.067 0.001 31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000	28	24	0.000	0.000	0.086	0.001
31 27 0.000 0.000 0.059 0.001 32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.001 0.000 35 50 0.000 0.000 0.000 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000	29	25	0.000	0.000	0.076	0.001
32 30 0.000 0.000 0.039 0.001 33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000	30	26	0.000	0.000	0.067	0.001
33 40 0.000 0.000 0.007 0.000 34 45 0.000 0.000 0.002 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000	31	27	0.000	0.000	0.059	0.001
34 45 0.000 0.000 0.000 0.000 35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 48 120 0.000	32	30	0.000	0.000	0.039	0.001
35 50 0.000 0.000 0.001 0.000 36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 49 125 0.000	33	40	0.000	0.000	0.007	0.000
36 60 0.000 0.000 0.000 0.000 37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000	34	45	0.000	0.000	0.002	0.000
37 65 0.000 0.000 0.000 0.000 38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000	35	50	0.000	0.000	0.001	0.000
38 70 0.000 0.000 0.000 0.000 39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000	36	60	0.000	0.000	0.000	0.000
39 75 0.000 0.000 0.000 0.000 40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000	37	65	0.000	0.000	0.000	0.000
40 80 0.000 0.000 0.000 0.000 41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000	38	70	0.000	0.000	0.000	0.000
41 85 0.000 0.000 0.000 0.000 42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 <td>39</td> <td>75</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	39	75	0.000	0.000	0.000	0.000
42 90 0.000 0.000 0.000 0.000 43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 <td>40</td> <td>80</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	40	80	0.000	0.000	0.000	0.000
43 95 0.000 0.000 0.000 0.000 44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000 <td>41</td> <td>85</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	41	85	0.000	0.000	0.000	0.000
44 100 0.000 0.000 0.000 0.000 45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	42	90	0.000	0.000	0.000	0.000
45 105 0.000 0.000 0.000 0.000 46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	43	95	0.000	0.000	0.000	0.000
46 110 0.000 0.000 0.000 0.000 47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	44	100	0.000	0.000	0.000	0.000
47 115 0.000 0.000 0.000 0.000 48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	45	105	0.000	0.000	0.000	0.000
48 120 0.000 0.000 0.000 0.000 49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	46	110	0.000	0.000	0.000	0.000
49 125 0.000 0.000 0.000 0.000 50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	47	115	0.000	0.000	0.000	0.000
50 130 0.000 0.000 0.000 0.000 51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	48	120	0.000	0.000	0.000	0.000
51 135 0.000 0.000 0.000 0.000 52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	49	125	0.000	0.000	0.000	0.000
52 140 0.000 0.000 0.000 0.000 53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	50	130	0.000	0.000	0.000	0.000
53 145 0.000 0.000 0.000 0.000 54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	51	135	0.000	0.000	0.000	0.000
54 150 0.000 0.000 0.000 0.000 55 155 0.000 0.000 0.000 0.000	52	140	0.000	0.000	0.000	0.000
55 155 0.000 0.000 0.000 0.000	53	145	0.000	0.000	0.000	0.000
	54	150	0.000	0.000	0.000	0.000
56 160 0.000 0.000 0.000 0.000	55	155	0.000	0.000	0.000	0.000
	56	160	0.000	0.000	0.000	0.000

57	165	0.000	0.000	0.000	0.000
58	170	0.000	0.000	0.000	0.000
59	175	0.000	0.000	0.000	0.000
60	180	0.000	0.000	0.000	0.000

由上述结果可知, 化粪池底部发生破损, 污水进入地下水后 1000d 内, 污水影响范围最远可达到的距离不超过项目所在地下游的 65m。

项目所在区域附近无饮用水水源保护区及其补给径流区,因此不会对饮用水源造成影响,但 废水一旦泄露至地下水中,自然恢复时间较长。因此,发生污染物泄露事故后,必须启动应急预 案,分析污染事故的发展趋势,并提出下一步预测和防治措施,迅速控制或切断事故事件灾害链,使污染扩散得到有效抑制,最大限度地保护下游地下水水质安全,将环境影响降到最低程度。

同时,要求企业履行环境保护职责,落实好防渗、防漏等切实可行的工程措施。

8.7 环境风险管理

1、环境风险监控

对厂区内容易引发重大突发环境事件的厂区生产车间、原料堆场等环境危险源每月定期组织进行检查、监控,并采取安全防范措施,对突发环境事件进行预防。对重点区域、重点岗位加大防范设备投资,提前发现隐患,及时处理突发事件。对原料堆场、危废暂存间等环境危险源设置专人进行领用登记、存量调查,并定期每周一次组织检查。严格按照厂内已制定的环保规章制度执行,以确保环保设施的正常运行。另外,须按环保相关要求建立完善的"三废"运行台帐制度,具体如下:

- ①废气、废水预控:加强对废气、废水的收集和处理设施的管理和维护。
- ②危废暂存间:对于危险废物的储存,要求专人负责,除要求危废暂存间做好防渗防漏措施外,负责的专人要做好外运处置废弃物的运输登记,认真填写危险废物转移联单,并到台州市生态环境局三门分局备案。
- ③原料堆场:要求将各类化学品分类单独存放,要求专人进行物料领用登记、存量调查,进 出做好台账,规范管理。

对于厂区内的环境危险源,要求企业定期组织检查。对生产车间实行车间主任负责制,专人 落实环境安全。并由相关科室定期组织检查。

2、贮存过程风险防范措施

贮存化学品的仓库管理人员必须经过专业知识培训,熟悉贮存物品的特性,事件处理办法和 防护知识,持证上岗,同时,必须配备有关的个人防护用品。

贮存的化学品必须设有明显的标志,并按照国家规定标准控制不同单位面积的最大储存量和 跺距。

贮存化学品的仓库的消防设施、用电设施、防雷防电设施等必须符合国家规定的安全要求。 化学品出入库必须经检查验收登记,贮存期间定期维护,控制好贮存场所的温度和湿度;装 卸、搬运时应轻装轻卸,注意自我防护。

要严格遵守有关贮存的安全规定,具体包括《仓库防火安全管理规定》、《建筑设计防火规范》、《易燃易爆化学品消防安全监督管理办法》等。

3、工艺、设备安全防范措施

- (1) 采用安全可靠的工艺技术,制定科学合理的操作规程。加强对操作人员的培训教育,熟悉操作规程、工艺控制参数以及各物料的火灾、爆炸危险性质,防止操作失误。
 - (2) 按规范设置消防系统,配置相应的灭火装置和设施,并定期检查使之处于有效状态。
- (3)火灾爆炸风险以及事故性泄漏常与装置设备故障相关联,生产过程中安全管理中要密切注意各类装置易发生事故部位,应进行定期检查与维修保养,防患于未然。
 - (4)生产车间等爆炸危险环境的建筑物应采取防直击雷、防雷电波和防雷电感应侵入的措施。
- (5)对于存在火灾爆炸危险的设备和装置应尽量提高系统的自动化程度,采用自动控制技术控制工艺操作程序及物料的配比、温度、压力等工艺参数,在设备发生故障、人员误操作形成危险状态时,通过自动报警、自动切换备用设备、启动连锁保护装置和安全装置等措施保证系统的安全。

4、运输过程风险防范措施

本项目涉及的原材料、危险废物,在运输过程均会产生一定的环境风险。运输过程风险防范 包括交通事故预防、运输过程设备故障性泄漏防范以及事故发生后的应急处理等,本项目运输以 陆路为主。为降低风险事故发生概率,企业在运输过程中,应做好如下防范措施:

- (1)运输过程风险防范应从包装着手,有关包装的具体要求可以参照《危险货物分类和品名编号》(6944-2012)、《危险货物包装标志》(GB190-2009)、《危险货物运输包装通用技术条件》(GB12463-2009)等一系列规章制度进行,包装应严格按照有关危险品特性及相关强度等级进行,并采用堆码试验、跌落试验、气密试验和气压试验等检验标准进行定期检验,运输包装件严格按规定印制提醒符号,标明危险品类别、名称及尺寸、颜色。
- (2)运输装卸过程也要严格按照国家有关规定执行,包括《汽车危险货物运输规则》(JT617-2004)、《汽车危险货物运输、装卸作业规程》(JT618-2004)、《机动车运行安全技术条件》(GB 7258-2012)等,运输易燃易爆有毒有害危险化学品的车辆必须办理相关手续,配备相应的消防器材,有经过消防安全培训合格的驾驶员、押运员,并提倡今后开展第三方现代物流运输方式。危险化学品装卸前后,必须对车辆和仓库进行必要的通风、清扫干净,装卸作业使用的工具必须能防止产生火花,必须有各种防护装置。
- (3) 危险废物运输应由持有危险废物经营许可证的单位按照其许可证的经营范围组织实施, 承担危险废物运输的单位应获得交通运输部门颁发的危险货物运输资质。
- (4) 危险废物公路运输应按照《道路危险货物运输管理规定》(交通部令〔2005〕第9号〕、 JT617 以及 JT618 执行。

- (5) 危险废物运输时的中转、装卸过程应遵守如下技术要求:
- ①卸载区的工作人员应熟悉废物的危险特性,并配备适当的个人防护装备,装卸剧毒废物应 配备特殊的防护装备。
 - ②卸载区应配备必要的消防设备和设施,并设置明显的指示标志。
 - ③危险废物装卸区应设置隔离设施。

5、事故应急池

日常当发生厂区火灾等事故,在消防过程将产生大量消防废水,部分泄漏未燃烧液体将混入消防废水中,废水污染物浓度较高,瞬时水量较大,不宜直接排入污水管网,厂区内外四周需设置导流,泄露液体及消防废水可通过导流沟进入事故应急池暂存。

应急池运行示意图具体如下,有事故废水产生时应急阀门打开(平时关闭),雨水阀门关闭(平时打开),事故废水进入事故应急池。

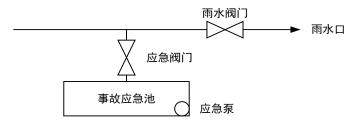


图 8-1 事故废水收集系统示意图

参照中国石油化工集团公司《水体环境风险防控要点》(试行)(中国石化安环〔2006〕10号)"水体污染防控紧急措施设计导则":企业应设置能够储存事故排水的储存设施,储存设施包括事故池、事故罐、防火堤内或围堰内区域等。主要考虑在西厂区设事故应急池,事故应急池总有效容积: $V_{\&=}(V_1+V_2-V_3)_{max}+V_4+V_5$

注: $(V_1+V_2-V_3)_{max}$ 是指对收集系统范围内不同罐组或装置分别计算 $V_1+V_2-V_3$, 取其中最大值。式中:

V · 事故缓冲设施总有效容积:

 V_1 ——收集系统范围内发生事故的罐组或装置的物料量, m^3 。储存相同物料的罐组按一个最大储罐计,单套装置物料量按存留最大物料量的一台反应器或中间储罐计,事故缓冲设施按一个罐组或单套装置计,末端事故缓冲设施按一个罐组加一套装置计。

 V_2 ——发生事故的储罐或装置的消防水量, m^3 :

$$V_2 = \sum Q n t n$$

其中: Q =——发生事故的储罐或装置的同时使用的消防设施给水流量, m³/h, t =——消防设施对应的设计消防历时, h。

 V_3 ——发生事故时可以转输到其他储存或处理设施的物料量, m^3 ;

 V_4 ——发生事故时仍必须进入该收集系统的生产废水量, m^3 :

 V_5 ——发生事故时可能进入该收集系统的降雨量, m^3 :

 $V_5=10qF$

q——降雨强度, mm, 按平均日降雨量:

 $q=q_a/n$

- q_a——全年平均降雨量, mm;
- n——年平均降雨日数;
- F——必须进入事故废水收集系统的雨水汇水面积, hm^2 。

根据现场调查,各项指标的取值如下所示。

- $(1) V_1 = 0 \text{m}^3$
- (2)根据《消防给水及消防栓系统技术规范》(GB50974-2014),发生火灾时,消防废水产生量为 15L/s,消防时间按 2h 计,则消防废水产生量约为 $72m^3$,则 $V_2=72m^3$ 。
- (3) 南地块 $V_{3=}177 \text{ m}^3$,北地块 $V_{3=}88.5 \text{ m}^3$ 。本项目分南、北两个地块,雨水管网主要分布于厂房四周及厂界四周,估算北地块雨水管网总长度为 400m,南地块雨水管网总长度为 900m,雨水管网直径按 0.5m 计,则发生事故时雨水口切断阀关闭后,南、北两厂区雨水管网内可容纳的消防废水量 V_3 分别为 $177m^3$ 、 $88.5 m^3$ 。
 - $(4) V_4 = 0 \text{m}^3$.
- (5)南地块 V_5 =334.4 m^3 ,北地块 V_5 =120 m^3 。据当地的气象特征: 多年平均降水量 1733.1 毫米,平均降雨天数 100 天,项目南地块汇水面积约 16716.2 m^2 (1.672 hm^2),北地块汇水面积约 6000 m^2 (0.6 hm^2)。

根据以上计算, 南地块事故应急池应不小于 230m³, 北地块事故应急池应不小于 104m³。

此外,要求企业必须在各路雨水管道和事故应急池加装截止阀门,与事故池相通,保证初期雨水和事故消防水能纳入事故池,对于雨水收集池,应加装应急阀门,确保事故状态下能及时关闭阀门,使受污染的雨水纳入企业事故池,杜绝事故废水排放。

6、环保设施安全生产要求

- (1)为预防和减少安全事故发生,保障从业人员生命安全,根据《浙江省应急管理厅浙江省生态环境厅关于加强工业企业环保设施安全生产工作的指导意见》(浙应急基础[2022]143号)和《浙江省安全生产委员会成员单位安全生产工作任务分工》(浙安委〔2024〕20号)文件提出下列要求:
- ①立项阶段。企业应当依法依规对建设项目开展环境影响评价,不得采用国家、地方淘汰的设备、产品和工艺。在环评技术审查等环节,必要时可邀请应急管理部门、行业专家参与科学论证。
- ②设计阶段。企业应当委托有相应资质(建设部门核发的综合、行业专项等设计资质)的设计单位对建设项目(含环保设施)进行设计,落实安全生产相关技术要求,自行开展或组织环保和安全生产有关专家参与设计审查,出具审查报告,并按审查意见进行修改完善。

③建设和验收阶段。施工单位应严格按照设计方案和相关施工技术标准、规范施工。建设项目竣工后,建设单位应当按照法律、法规规定的标准和程序,对环保设施进行验收,确保环保设施符合生态环境和安全生产要求,并形成书面报告。

(2) 有效落实各方安全管理责任

严格落实企业主体责任。企业要把环保设施安全落实到生产经营工作全过程各方面,建立环保设施台账和维护管理制度,对环保设施操作、危险作业等相关岗位人员开展安全操作规程、风险管控、应急处置等专项安全培训教育。要依法依规开展环保设施安全风险辨识管控和隐患排查治理,定期进行安全可靠性鉴定,设置必要的安全监测监控系统和联锁保护,严格日常安全检查。要严格执行吊装、动火、登高、有限空间、检维修等危险作业审批制度,落实安全隔离措施,实施现场安全监护,配齐应急处置装备,确保环保设施安全、稳定、有效运行。

8.8 环境风险结论

企业在生产过程中存在着潜在的火灾爆炸、泄漏、事故排放等危险因素。企业应严格按照国家有关政策、标准、规范,在完善事故应急预案的基础上,事故发生概率很低,采取妥善的风险防范措施,企业环境风险在可接受的范围内,对人群健康及周围环境不会造成不良影响。

表 8-20 环境风险评价自查表

	工作内容		70-2	•	<i>7</i> 0/ 1/	5	 完成情况					
	危险物质	名称	润滑油			乳化液	天 然 气	丙烷	铬	镍	废 乳 化 液	危险废物
		存在总量/t	1.7	10	50	1.7	1.0	0.7	0.133	0.133	2	109.48 4
风险		大气		范围内人 公里管					m 范围内 (最大)	人口数。		ι
调	险 调 查 环境敏感性	ルまし	地表水	功能敏性		F1 🗆			F2☑			3□
		地表水	环境敏感目标 分级			S1 🗆		S2□			S3☑	
		地下水功能敏 地下水				G1 🗆	G1 a G2a		G2□	G3☑		3
]	D1 ☑	Ĭ D2□			D3□			
物	质及工艺系统	Q值	Q<1 🗆		1≤	1≤Q<10 ☑		10≤Q<100□			Q>100 □	
	危险性	M 值	M	1 🗆		M2□]	M3☑		M	4□
		P值	P	lo		P2□			P3□		P4	Į✓
	环境敏感	大气		E1□			Е	2☑			Е3□	
	が現敏恐 程度	地表水		E1 □			Е	2☑			Е3□	
	111/12	地下水		E1 □			Е	2☑			Е3□	
玡	「境风险潜势	$IV^+\Box$		IV□		III□			ΙΙΦ		I	
	评价等级	一级□]	-	二级口	.级□		三级 🗹			简单分析□	

凤	物质危险性	有毒有質		易燃易爆 ☑				
险	环境风险类型	泄漏	V		火灾	、爆炸引发伴生/	欠生污染物排放 ☑	
识 别	影响途径	大气 🗹		地表水		地	下水☑	
事	耳故情形分析	源强设定方法		计算法□	经	验估算法□	其他估算法 ☑	
风		预测模型		SLAB □	A	AFTOX □	其他 🗹	
险	大气	 预测结果		大气	大气毒性终点浓度-1 最大影响范围 m			
预		贝则结米	大气毒性终点浓度-2 最大影响范围 m					
测	地表水			最近环境敏原	惑目标,至	削达时间 h		
与				下游厂区	边界到达	时间 d		
评价	地下水			最近环境敏感	惑目标,至	到达时间 d		
重点	风险防范措施			具体见"事	故风险防	范措施"		
725		在落实各项环保措施	在落实各项环保措施和本评价所列是环境风险防范措施,加强风险管理的条件下,项目的					
评价结论与建议								
		注: "	□"为々	习选项,""为均	真写项。			

附表

建设项目污染物排放量汇总表 单位: t/a

项目 分类	污染物名称	现有工程 排放量(固体废物 产生量)①	现有工程 许可排放量 ②	在建工程 排放量(固体废物 产生量)③	本项目 排放量(固体废物 产生量)④	以新带老削減量 (新建项目不填) ⑤	本项目建成后 全厂排放量(固体 废物产生量)⑥	变化量 ⑦
	工业烟粉尘	6.787	2.615		17.579	6.787	17.579	+10.792
	氟化物	0.017	未体现		0.282	0.017	0.282	+0.265
	二噁英	2.40×10 ⁻¹⁰	未体现		1.164E-07	2.40×10^{-10}	1.164E-07	+1.162E-07
	SO_2	0.098	0.79		2.248	0.098	2.248	+2.15
废气	NOx	5.369	7.39		21.025	5.369	21.025	+15.656
	铬及其化合物	2.42×10 ⁻³	0		0.033	2.42×10^{-3}	0.033	+0.031
	镍及其化合物	2.20×10 ⁻³	0		0.033	2.20×10^{-3}	0.033	+0.031
	VOCs	0	0		0.04	0	0.04	+0.04
	食堂油烟	0.0089	0.0096		0.010	0.0089	0.010	+0.0011
	废水量	1400	1530		5610	1400	5610	+4210
废水	COD_{Cr}	0.042	0.046		0.168	0.042	0.168	+0.126
	氨氮	0.002	0.002		0.008	0.002	0.008	+0.006
	废渣	1435	1500		6238.909	1435	6238.909	+4803.909
	废耐火材料	100	未体现		300	100	300	+200
	废氧化皮	950	未体现		3956.1	950	3956.1	+3006.1
一般工业 固体废物	经规范处置的 含油金属屑	42.0	未体现		120.1	42.0	120.1	+78.1
	一般废包装材 料	3.0	未体现		10	3.0	10	+7
	水淬沉渣	0	0		128	0	128	+128
在1公広Mm	废乳化液	2.2	未体现		22	2.2	22	+19.8
危险废物	沾染化学品的	0.4	未体现		1.2	0.4	1.2	+0.8

废包装材料						
废含油包装桶	2.0	未体现	6.0	2.0	6.0	+4
废液压油	6.5	未体现	45t/3a	6.5	45t/3a	+38.5
废润滑油	2.0	未体现	3.2	2.0	3.2	+1.2
废含油手套和 抹布	0.05	未体现	0.1	0.05	0.1	+0.05
集尘灰	22	44	750.739	22	750.739	+728.739
废布袋	0.5	未体现	3.0	0.5	3.0	+2.5

注: ⑥=①+③+④-⑤; ⑦=⑥-①。